Skip to main content
Log in

Investigation of the Photocurrent in Hot-Wall-Epitaxy-Grown BaIn2S4 Layers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The photocurrent (PC) of hot-wall-epitaxy-grown BaIn2S4 layers was studied at different temperatures and for different photoresponse intensities. With increasing temperature, the position of the PC spectra tended to shift toward longer wavelength. These PC peaks corresponded to band-to-band transitions caused by intrinsic transitions from the valence band states to the conduction band states. Also, the bandgap variations were well matched by the equation E g(T) = E g(0) − 3.79 × 10−3 T 2/(T + 499), where E g(0) was estimated to be 3.0597 eV, 3.2301 eV, and 3.2606 eV for transitions corresponding to the valence band states Γ 4(z), Γ 5(x), and Γ 5(y), respectively. By use of the selection rule and results from the PC spectroscopy, the crystal field and the spin–orbit splitting were found to be 0.1703 and 0.0306 eV, respectively. Thus, the PC intensity gradually decreased with decreasing temperature. The decrease of PC intensity was caused by the presence of trapping centers associated with native defects in the BaIn2S4 layers. The trap level was found to be a shallow donor-level type of 20.4 meV, 1.6 meV below the conduction band. Consequently, these trap levels, which are related to native defects in BaIn2S4 layers, are believed to limit PC intensity with decreasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.I. Radautsan, A.N. Georgobiani, and I.M. Tiginyanu, Prog. Cryst. Growth Charact. 10, 403 (1984).

    Article  Google Scholar 

  2. O. Vigil, O. Calzadilla, D. Seuret, J. Vidal, and F. Leccabue, Sol. Energy Mater. 10, 139 (1984).

    Article  Google Scholar 

  3. E. Fotin and F. Raga, Solid State Commun. 14, 847 (1974).

    Article  Google Scholar 

  4. A.N. Georgobiani, S.I. Radautsan, and I.M. Tiginyanu, Sov. Phys. Semicond. 19, 121 (1985).

    Google Scholar 

  5. S.I. Radautsan, Proc. 8th Int. Conf. on Ternary and Multinary Compounds (Kishinev, Sept. 1990) (Kishinev: Shtiintsa Press, 1992), p. 8.

  6. B. Eisenmann, M. Jakowski, W. Klee, and H. Schafer, Rev. Chim. Miner. 20, 255 (1983).

    Google Scholar 

  7. N.V. Joshi, Photoconductivity: Art, Science, and Technology (New York: Marcel Dekker, 1990).

    Google Scholar 

  8. C. Hidaka, M. Goto, M. Kubo, and T. Takizawa, J. Cryst. Growth 275, e439 (2005).

    Article  Google Scholar 

  9. M. Noboru, K. Mitsuhiro, M. Hironaga, and N. Ryotaro, Jpn. J. Appl. Phys. 38, L1291 (1999).

    Article  Google Scholar 

  10. T.E. Peter and J.A. Baglio, J. Electrochem. Soc. 119, 230 (1972).

    Article  Google Scholar 

  11. P.F. Smet, J.E.V. Haecke, R.L.V. Meirhaeghe, and D. Poelman, J. Appl. Phys. 98, 043512 (2005).

    Article  Google Scholar 

  12. P.F. Smet, I. Moreels, Z. Hens, and D. Poelman, Materials 3, 2834 (2010).

    Article  Google Scholar 

  13. M.Y. Kim, W.T. Kim, M.S. Jin, S.A. Park, S.H. Choe, C.I. Lee, S.C. Hyun, and C.D. Kim, J. Phys. Chem. Solids 64, 625 (2003).

    Article  Google Scholar 

  14. M.Y. Kim, W.T. Kim, M.S. Jin, S.A. Park, N.O. Kim, H.G. Kim, S.C. Hyun, and C.D. Kim, J. Korean Phys. Soc. 41, 774 (2002).

    Google Scholar 

  15. S.A. Park, M.Y. Kim, W.T. Kim, M.S. Jin, S.H. Choe, T.Y. Park, K.H. Park, and D.T. Kim, J. Mater. Res. 17, 2147 (2002).

    Article  Google Scholar 

  16. K.L. Greenaway and G. Harbeke, Optical Properties and Band Structure of Semiconductors (Oxford: Pergamon, 1968).

  17. R.H. Bube, Phys. Rev. 101, 1668 (1956).

    Article  Google Scholar 

  18. R.H. Bube, Photoconductivity of Solids (New York: Wiley, 1969).

    Google Scholar 

  19. S.H. You, K.J. Hong, T.S. Jeong, C.J. Youn, J.S. Park, D.C. Shin, and J.D. Moon, J. Cryst. Growth 256, 116 (2003).

    Article  Google Scholar 

  20. C.C. Klick, Phys. Rev. 89, 274 (1953).

    Article  Google Scholar 

  21. J.L. Shay and J.H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications (Oxford: Pergamon, 1975).

    Google Scholar 

  22. M. Aven and J.S. Prener, Physics and Chemistry of II–VI compounds (Amsterdam: North-Holland, 1967).

    Google Scholar 

  23. R.A. Smitt, Semiconductor, 2nd ed. (Cambridge: Cambridge University, 1978).

    Google Scholar 

  24. Y.P. Varshni, Physica 34, 149 (1967).

    Article  Google Scholar 

  25. D.-R. Hang, S.E. Islam, K.H. Sharma, S.-W. Kuo, C.-Z. Zhang, and J.-J. Wang, Nanoscale Res. Lett. 9, 632 (2014).

    Article  Google Scholar 

  26. J.C. Simmons and G.W. Taylor, J. Phys. C 7, 3051 (1974).

    Article  Google Scholar 

  27. P. Kumar, J. Kumar, M. Ahmad, and R. Thangaraj, Appl. Phys. A 90, 469 (2008).

    Article  Google Scholar 

  28. J. Beltran-Huarac, J. Wang, H. Tanaka, W.M. Jadwisienczak, B.R. Weiner, and G. Morell, J. Appl. Phys. 114, 053106 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.J. Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, S., Hong, K., Jeong, T. et al. Investigation of the Photocurrent in Hot-Wall-Epitaxy-Grown BaIn2S4 Layers. J. Electron. Mater. 44, 4787–4793 (2015). https://doi.org/10.1007/s11664-015-4019-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4019-7

Keywords

Navigation