Skip to main content
Log in

Effects of Temperature-Dependent Material Properties on Temperature Variation in a Thermoelement

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The dependency of temperature variation in a thermoelement on the temperature-dependent material properties was analyzed under the prescribed temperatures at its two ends. Based on the homotopy perturbation method, an analytical solution of the nonlinear governing equation for thermoelectric heat transport was obtained and then used for the analysis. Four different thermoelectric materials were used in the current work to study temperature variation along the thermoelement. The results calculated by the analytical solution of the nonlinear differential equation showed significant differences in temperature variation from those calculated by the analytical solution of linear differential equation which is based on the constant material property assumption. These differences in temperature distribution affect the accuracy of the predicted power and thus the predicted performance of thermoelectric modules or devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).

    Article  Google Scholar 

  2. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  Google Scholar 

  3. G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, and T. Caillat, Int. Mater. Rev. 48, 45 (2003).

    Article  Google Scholar 

  4. M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

  5. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  6. C. Han, Z. Li, and S. Dou, Chin. Sci. Bull. 59, 2073 (2014).

    Article  Google Scholar 

  7. Z.G. Chen, G. Han, L. Yang, L. Cheng, and J. Zhou, Prog. Nat. Sci. 22, 535 (2012).

    Article  Google Scholar 

  8. J. He, Y.F. Liu, and R. Funahashi, J. Mater. Res. 26, 1762 (2011).

    Article  Google Scholar 

  9. T.M. Tritt and M.A. Subramanian, MRS Bull. 31, 188 (2006).

    Article  Google Scholar 

  10. H. Böttner, G. Chen, and R. Venkatasubramanian, MRS Bull. 31, 211 (2006).

    Article  Google Scholar 

  11. A.M. Rao, X. Ji, and T.M. Tritt, MRS Bull. 31, 218 (2006).

    Article  Google Scholar 

  12. C.J. Vineis, A. Shakouri, A. Majumdar, and M.G. Kanatzidis, Adv. Mater. 22, 3970 (2010).

    Article  Google Scholar 

  13. J. Yang, Proceedings of 24th International Conference on Thermoelectrics (2005), pp. 155–159.

  14. A. Kushch, M. Karri, B. Helenbrook, and C.J. Richter, Presentations 2004 DEER Conference (Coronado, 2004).

  15. J. LaGrandeur, D. Crane, and A. Eder, Presentations 2005 DEER Conference (Chicago, 2005).

  16. J.W. Fairbanks, Presentations 2006 DEER Conference (Detroit, 2006).

  17. J. Yang, Presentations 2008 DOE Vehicle Technologies Annual Merit Review Meeting (2008).

  18. G.P. Meisner, Presentations 2010 DEER Conference (Detroit, 2010).

  19. E.A. Ibrahim, J.P. Szybist, and J.E. Parks, J. Automob. Eng. 224, 1097 (2010).

    Article  Google Scholar 

  20. J.P. Meisner, Presentations 2011 Thermoelectric Applications Workshop (San Diego, 2011).

  21. B. Mazar, Presentations Thermoeletrics Applications Workshop (Baltimore, 2012).

  22. J.R. Salvador and G.P. Meisner, Presentations 2013 DOE Hydrogen Fuel Cells Program Vehicles Technologies Office Annual Merit Review and Peer Evaluation Meetings (2013). http://www4.eere.energy.gov/.

  23. T.J. Hendricks and J.A. Lustbader, Proceedings of 21st International Conference on Thermoelectrics (2002), pp. 381–386.

  24. T.J. Hendricks and J.A. Lustbader Proceedings of 21st International Conference on Thermoelectrics (2002), pp. 387–394.

  25. R. Funahashi, T. Miharal, M. Mikamil, S. Uratal, N. Andol, and E. Guilmea, Proceedings 2nd European Conference on Thermoelectrics (Krakow, 2004).

  26. R. Funahashi, T. Mihara, M. Mikami, S. Urata, and N. Ando, Proceedings of 24th International Conference on Thermoelectrics (2005), pp. 295–302.

  27. S. Kumar, S. Heister, X.F. Xu, J. Salvador, and G. Meisner, J. Electron. Mater. 42, 665 (2013).

    Article  Google Scholar 

  28. K. Yazawa and A. Shakouri, Environ. Sci. Technol. 45, 7548 (2011).

    Article  Google Scholar 

  29. L. Chen, F. Meng, and F. Sun, Sci. Iran. 19, 1337 (2012).

    Article  Google Scholar 

  30. K.T. Zorbas, E. Hatzikraniotis, and K.M. Paraskevopoulos, Proceedings of 5th European Conference on Thermoelectrics (Odessa, 2007), Paper #30.

  31. A. Chakraborty, B.B. Saha, S. Koyama, and K.C. Ng, Int. J. Heat Mass Transfer 49, 3547 (2006).

    Article  Google Scholar 

  32. H.L. Tsai and J.M. Lin, J. Electron. Mater. 39, 2105 (2010).

    Article  Google Scholar 

  33. A.E. Kaliazin, V.L. Kuznetsov, and D.M. Rowe, Proceedings of IEEE 20th International Conference on Thermoelectrics (2001), pp. 286–292.

  34. C. Baker, P. Vuppuluri, L. Shi, and M. Hall, J. Electron. Mater. 41, 1290 (2012).

    Article  Google Scholar 

  35. X.C. Xuan, K.C. Ng, C. Yap, and H.T. Chua, Int. J. Heat Mass Transfer 45, 5159 (2002).

    Article  Google Scholar 

  36. A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch Ltd, London, 1957).

    Google Scholar 

  37. A.I. Burshtein, Sov. Phys. 2, 1397 (1957).

    Google Scholar 

  38. B.Y. Moizhes, Sov. Phys. 2, 671 (1960). [Translated from Fizika Tverdogo Tela, 2(4), 728(1960)].

    Google Scholar 

  39. E. Müller, S. Walczak, W. Seifert, C. Stiewe, and G. Karpinski, Proceedings of 24th International Conference on Thermoelectrics (2005), pp. 364–369.

  40. E. Elena and D.C. Looman, Proceedings of 24th International Confernce on Thermoelectrics (2005), pp. 295–302.

  41. M. Chen, L.A. Rosendahl, T.J. Condra, and J.K. Pedersen, IEEE Trans. Energy Convers. 24, 112 (2009).

    Article  Google Scholar 

  42. M. Chen, L.A. Rosendahl, and T.J. Condra, Int. J. Heat Mass Transfer 54, 345 (2011).

    Article  Google Scholar 

  43. W. Seifert, M. Ueltzen, and E. Müller, Phys. Status Solidi A 194, 277 (2002).

    Article  Google Scholar 

  44. B. Sherman, R.R. Heikes, and R.W. Ure Jr, J. Apply. Phys. 31, 1 (1960).

    Article  Google Scholar 

  45. J. Chen and Z. Yan, J. Appl. Phys. 79, 1 (1996).

    Article  Google Scholar 

  46. J. Yu, H. Zhao, and K. Xie, Cryogenics 47, 89 (2007).

    Article  Google Scholar 

  47. S.J. Liao, Int. J. Nonlinear Mech. 34, 759 (1999).

    Article  Google Scholar 

  48. J.H. He, Comput. Methods Appl. Mech. Eng. 178, 257 (1999).

    Article  Google Scholar 

  49. H.B. Callen, Thermodynamics (Wiley, New York, 1985).

    Google Scholar 

  50. C. Goupil, in Thermodynamics, ed. by M. Tadashi (Intech, Shanghai, 2011), p. 275.

    Google Scholar 

  51. C.A. Domenicali, J. Appl. Phys. 25, 1310 (1954).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T. Effects of Temperature-Dependent Material Properties on Temperature Variation in a Thermoelement. J. Electron. Mater. 44, 3612–3620 (2015). https://doi.org/10.1007/s11664-015-3875-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3875-5

Keywords

Navigation