Skip to main content
Log in

A CdTe passivation process for long wavelength infrared HgCdTe photo-detectors

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Passivant-Hg1−xCdxTe interface has been studied for the CdTe and anodic oxide (AO) passivants. The former passivation process yields five times lower surface recombination velocity than the latter process. Temperature dependence of surface recombination velocity of the CdTe/n-HgCdTe and AO/n-HgCdTe interface is analyzed. Activation energy of the surface traps for CdTe and AO-passivated wafers are estimated to be in the range of 7–10 meV. These levels are understood to be arising from Hg vacancies at the HgCdTe surface. Fixed charge density for CdTe/n-HgCdTe interface measured by CV technique is 5×1010 cm−2, which is comparable to the epitaxially grown CdTe films. An order of magnitude improvement in responsivity and a factor of 4 increase in specific detectivity (D*) is achieved by CdTe passivation over AO passivation. This study has been conducted on photoconductive detectors to qualify the CdTe passivation process, with an ultimate aim to use it for the passivation of p-on-n and n-on-p HgCdTe photodiodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Nemirovsky, N. Mainzer, and E. Weiss, in Properties of Narrow Gap Cadmium Based Compounds, ed. P. Capper (London: INSPEC, IEE, 1994), pp. 284–290.

    Google Scholar 

  2. G. Sudo, N. Kajihara, Y. Miyamoto, and K. Tanikawa, Appl. Phys. Lett. 51, 1521 (1987).

    Article  ADS  CAS  Google Scholar 

  3. W. Chang and R. Krishnan, J. Electrochem. Soc. 140, 829 (1993).

    Article  Google Scholar 

  4. W.E. Tenant, W.E. Cockrum, J.B. Gilpin, M.A. Kinch, M.B. Reine, and R.P. Ruth, J. Vac. Sci. Technol. B 10, 1359 (1992).

    Google Scholar 

  5. J.M. Arias, J.G. Pasko, M. Zandian, S.H. Shin, G.M. Williams, L.O. Bubulac, and R.E. De Wames, J. Electron. Mater. 22, 1049 (1993).

    CAS  Google Scholar 

  6. S.M. Johnson, D.R. Rhiger, J.P. Rosebeck, J.M. Peterson, S.M. Taylor, and M.E. Boyd, J. Vac. Sci. Technol. B 10, 1499 (1992).

    Google Scholar 

  7. J. Cheung and I. Shin, J. Vac. Sci. Technol. B 10, 1538 (1992).

    Google Scholar 

  8. R. Singh, A.K. Gupta, and K.C. Chhabra, Def. Sci. J. (India) 41, 231 (1991).

    Google Scholar 

  9. S. Bothara, S.D. Tyagi, S.K. Gandhi, and J.M. Borrego, Proc. 21st IEEE Photovoltaic Specialists Conf. (Kissimmee, FL: IEEE, 1990), pp. 404–408.

    Book  Google Scholar 

  10. M.E. Seelmann-Eggbert, G. Brandt, and G. Richter, J. Vac. Sci. Technol. A2, 11 (1984).

    ADS  Google Scholar 

  11. G.D. Davis, T.S. Sun, S.P. Buthcner, and N.E. Byer, J. Vac. Sci. Technol. 19, 472 (1981).

    Article  CAS  Google Scholar 

  12. G.D. Davis et al., Appl. Surface Sci. 15, 238 (1983).

    Article  CAS  Google Scholar 

  13. J.S. Ahern, G.D. Devis, and N.E. Byer, J. Vac. Sci. Technol. 20, 756 (1982).

    Article  Google Scholar 

  14. R.N. Hall, Phys. Rev. 87, 387 (1952).

    Article  ADS  CAS  Google Scholar 

  15. W. Shockley and W.T. Read, Phys. Rev. 87, 835 (1952).

    Article  MATH  ADS  CAS  Google Scholar 

  16. D.T. Stevenson and R.J. Keyes, Physica 20, 1041 (1954).

    Article  ADS  CAS  Google Scholar 

  17. E. Finkman and S.E. Schhaum, J. Vac. Sci. Technol. A 7, 464 (1989).

    Article  ADS  CAS  Google Scholar 

  18. M.A. Kinch, M.J. Brau, and A. Simmons, J. Appl. Phys. 44, 1649 (1973).

    Article  ADS  CAS  Google Scholar 

  19. C. Littler, Properties of Narrow gap Cadmium Based Compounds, ed. P. Capper (London: INSPEC, IEE, 1994), pp. 250–253.

    Google Scholar 

  20. R.G. Pratt, J. Hewitt, P. Capper, C.L. Jones, and N. Judd, J. Appl. Phys. 60, 2377 (1986).

    Article  ADS  CAS  Google Scholar 

  21. J.D. Beck, M.A. Kinch, E.J. Esposito, and R.A. Chapman, J. Vac. Sci. Technol. 21, 172 (1982).

    Article  CAS  Google Scholar 

  22. G. Bahir, V. Ariel, V. Garber, and D. Rosenfeld, Appl. Phys. Lett. 65, 2725 (1994).

    Article  ADS  CAS  Google Scholar 

  23. R. Pal, B.L. Sharma, V. Gopal, and V. Kumar, Infrared Phys. Technol. 40, 101 (1999).

    Article  ADS  CAS  Google Scholar 

  24. R.M. Broudy and V.J. Mazurczyk, in Semiconductors and Semi-Metals, ed. R.K. Willardson and A.C. Beer, vol. 18 (London: Academic Press, 1981), pp. 157–199.

    Google Scholar 

  25. M.A. Kinch, in Semiconductors and Semi-Metals, ed. R.K. Willardson and A.C. Beer, vol. 18 (London: Academic Press, 1981), pp. 313–378.

    Google Scholar 

  26. P.C. Catagnus and C.T. Baker, U.S. Patent 3,977,018 (1976).

    Google Scholar 

  27. Y. Nemirovski and I. Kidron, Solid State Electron. 22, 831 (1979).

    Article  Google Scholar 

  28. E. Bertagnolli, Thin Solid Films 135, 267 (1986).

    Article  CAS  Google Scholar 

  29. B.K. Janousek and R.C. Carscallen, J. Vac. Sci. Technol. 21, 442 (1982).

    Article  CAS  Google Scholar 

  30. B.K. Janousek, and R.C. Carscallen, J. Appl. Phys. 53, 1720 (1982).

    Article  ADS  CAS  Google Scholar 

  31. O.P. Agnihotri, C.A. Musca, and L. Faraone, Semicond. Sci. Technol. 13, 839 (1998).

    Article  ADS  CAS  Google Scholar 

  32. C.M. Stahle, C.R. Helms, H.F. Schaake, R.L. Strong, A. Simmons, J.B. Pallix, and C.H. Becker, J. Vac. Sci. Technol. A7, 474 (1989).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, V., Pal, R., Chaudhury, P.K. et al. A CdTe passivation process for long wavelength infrared HgCdTe photo-detectors. J. Electron. Mater. 34, 1225–1229 (2005). https://doi.org/10.1007/s11664-005-0267-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-005-0267-2

Key words

Navigation