Skip to main content
Log in

Synthesis and thermal analysis of aluminium nitride filled epoxy composites and its effective application as thermal interface material for LED applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The improvement of heat conduction in any electronic devices has become a predominant issue in which effective heat dissipation is crucial to enhance the performance of packaged devices. This paper elucidates the application of thermally conductive particles filled composites as thermal interface material for LEDs. Present work aims on reducing the junction temperature and thermal resistance of the device under test with heavily filled ceramic-epoxy composite as the interface material between the device and metal substrate. Silane treated aluminium nitride (AlN) powder was studied for its feasibility as the filler material. The thermal conductivity values obtained by hot disc method (ISO/DIS 22007-2.2) were 0.66, 0.54 and 0.44 W/mK for 60, 50 and 40 wt% AlN filled epoxy composites respectively which were described well by thermal transient measurement of LEDs. The junction temperature and total thermal resistance of the thermal set up was reduced significantly with increased filler loading. The least junction to ambient thermal resistance (RthJ-A) was achieved for 60 wt% followed by 50 and 40 wt% AlN filled TIM with the values of 24.8, 31.98 and 34.64 K/W respectively. Characteristics of the AlN filled composites for LED applications are discussed extensively in terms of thermogravimetric and thermo-mechanical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C.H. Chao Chen, L.J. Yu, C.H. Yi, Opt. Express. 21, 3 (2013)

    Google Scholar 

  2. LED Professional Review, 2 (June 2007) Luger Research & LED professional

  3. A. Poppe, G. Farkas, G. Molnár, B. Katona, T. Temesvölgyi, W.K. Jimmy, Proc. SPIE, 7784 (2010)

  4. A. Poppe, G. Farkas, V. Székely, G. Horváth, M. Rencz, 22nd IEEE Meas. Power SEMI-THERM Symp. (2006)

  5. A. Boudennea, L. Ibosa, M. Foisa, J.C. Majeste, E. Ge´hina, Compos. Part A. 36 (2005)

  6. J. Xu, K.S. Moon, C. Tison, C.P. Wong, IEEE Trans. Adv. Packag. 29, 2 (2006)

    Article  Google Scholar 

  7. H.J. Kim, D.H. Jung, I.H. Jung, J.I. Cifuentes, K.Y. Rhee, D. Hui, Compos. Part B. 43, 1743 (2012)

  8. S.Y. Pak, H.M. Kim, S.Y. Kim b, J.R. Youn, Carbon. 50, 4830 (2012)

  9. C.C. Teng, C.C.M. Ma, K.C. Chiou, T.M. Lee, Compos. Part B. 43, 265 (2012)

  10. E.S. Lee, S.M. Lee, J. Am. Ceram. Soc. 91, 4 (2008)

    Google Scholar 

  11. K. Kim, J. Kim, Ceram. Int. 40, 5181 (2014)

  12. J.D. Bolt, D.D. Button, B.A. Yost, Mater. Sci. Eng. A. 109, 207 (1989)

  13. Y. Zhou, H. Wang, L. Wang, K. Yu, Z. Lin, L. He, Y. Bai, Mater. Sci. Eng. B. 177, 892 (2012)

  14. S. Chooi, J. Kim, Compos. Part B. 51, 140 (2013)

  15. F.Y. Yuan, H.B. Zhang, X. Li, X.Z. Li, Z.Z. Yu, Compos. Part A. 53, 137 (2013)

  16. J.A. Molefi, A.S. Luyt, I. Krupa, Express Polym. Lett. 3, 10 (2009)

    Google Scholar 

  17. G.W. Lee, M. Park, J. Kim, J.I Lee, H.G. Yoon, Compos. Part A. 37, 727 (2006)

  18. J. Jiao, S. Rak, A. Polak, Thermochim. Acta. 357–358, 313 (2006)

  19. M.A. Raza, A.V.K. Westwood, A.P. Brown, C. Stirling, J. Mater. Sci-Mater. Electron. 23, 1855 (2012)

  20. S.A. Shokralla, N.S. Al-Muaikel. Arab. J. Sci. Eng. 35, 7 (2010)

  21. Y.S. Xu, D.D.L. Chung, Compos. Interfaces 7, 4 (2000)

    Article  Google Scholar 

  22. S. Li, S. Qi, N. Liu, P. Cao, Thermochim. Acta. 523, 111 (2011)

  23. J.P. Hong, W.Y Sung, T. Hwang, S.O. Joon, C.H Seung, Y. Lee, D.N Jae, Thermochim. Acta. 537, 70 (2012)

  24. LT W5SM Golden Dragon. http://catalog.osram-os.com/catalogue/catalogue.do?favOid=0000000000032440001d0023&act=showBookmark

  25. L.C. Sim, S.R. Ramanan, H. Ismail, K.N. Seetharamu, T.J. Gohc, Thermochim. Acta. 430, 155 (2005)

  26. R.M. Overney, C. Buenviaje, R. luginbuhl. F. Dinelli, J. Therm. Anal. Calorim. 59, 205 (2000)

  27. MasterBond Tech spotlight, How to Relieve Thermally Induced Stress with Epoxies, Master Bond Inc. 154 Hobart Street, Hackensack, NJ 07601 USA, WhitePaper@masterbond.com

  28. W.C. Lim, L.H. Huong, W.S. Chow, J. Phys. Sci. 21, 1 (2010)

    Google Scholar 

  29. P. Dittanet, R.A. Pearson, Polymer 54, 7 (2013)

    Article  Google Scholar 

  30. V. Szekely, V.B. Tran, Solid-State Electron. 31, 9 (1988)

    Article  Google Scholar 

  31. M. Rencz, Microelectron. J. 34, 3 (2003)

    Article  Google Scholar 

  32. M. Rencz, A. Poppe, E. Kollar, S. Ress, V. Szekely, B.Courtois, IEEE Trans. Thermal and Thermomechanical Phenomena in Electronic Systems, ITHERM 04, 1 (2004)

Download references

Acknowledgments

The authors would like to thank USM for the Post Graduate Research Grant Scheme (PRGS) funding, OSRAM Optosemiconductors (Malaysia) Sdn. Bhd. and OSRAM Optosemiconductors GmbH, Regensburg, Germany for characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Anithambigai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anithambigai, P., Mutharasu, D., Huong, L.H. et al. Synthesis and thermal analysis of aluminium nitride filled epoxy composites and its effective application as thermal interface material for LED applications. J Mater Sci: Mater Electron 25, 4814–4821 (2014). https://doi.org/10.1007/s10854-014-2238-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2238-y

Keywords

Navigation