Skip to main content
Log in

Genomic Effects of the Quenching Process on the Microstructure and Thermoelectric Properties of Yb0.3Co4Sb12

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study systematically examines the traditional “melting–quenching–annealing” fabrication method for filled skutterudite Yb0.3Co4Sb12 to clarify which gene most influences the phase composition, microstructure, and thermoelectric properties of the final products. X-ray diffraction, electron energy dispersive spectroscopy, scanning electron microscopy, and thermoelectric measurements suggest that the Co-Sb peritectic segregation occurring during the quenching process—which can be inherited in the following ensuing fabrication process—shows a very important genomic effect on the microstructure evolution. Severe Co-Sb peritectic segregation would increase the diffusion paths of the composed elements (Yb, Co, and Sb) during the annealing process, making it significantly more difficult to form high-performance single filled skutterudites. The traditional fabrication process can be optimized by introducing a stirring step to accelerate the cooling rate, effectively suppressing the Co-Sb peritectic segregation and consequently improving thermoelectric performance; this result has been achieved in the large-scale Yb0.3Co4Sb12 sample. Our results suggest that the control of Co-Sb peritectic segregation is critical when developing the mass production process for filled skutterudites in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Uher, Recent Trends in Thermoelectric Materials Research II.Semiconductors and Semimetals, Vol. 69, ed. T.M. Tritt (San Diego: Academic, 2000), p. 139.

    Google Scholar 

  2. G.A. Slack, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC, 1995), p. 407.

    Google Scholar 

  3. G.S. Nolas, M. Kaeser, R.T. Littleton, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).

    Article  Google Scholar 

  4. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  5. G. Rogl and P. Rogl, Sci. Adv. Mater. 3, 517 (2011).

    Article  Google Scholar 

  6. J.H. Yang and F.R. Stabler, J. Electron. Mater. 38, 1245 (2009).

    Article  Google Scholar 

  7. W.Y. Zhao, P. Wei, Q.J. Zhang, C.L. Dong, L.S. Liu, and X.F. Tang, J. Am. Chem. Soc. 131, 3713 (2009).

    Article  Google Scholar 

  8. X. Shi, J. Yang, J.R. Salvador, M.F. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J.H. Yang, W.Q. Zhang, and L.D. Chen, J. Am. Chem. Soc. 133, 7837 (2011).

    Article  Google Scholar 

  9. P.F. Qiu, J. Yang, R.H. Liu, X. Shi, X.Y. Huang, G.J. Snyder, W. Zhang, and L.D. Chen, J. Appl. Phys. 109, 063713 (2011).

    Article  Google Scholar 

  10. X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, W.B. Zhang, and Y.Z. Pei, J. Appl. Phys. 99, 053711 (2006).

    Article  Google Scholar 

  11. P.F. Qiu, X. Shi, X.H. Chen, X.Y. Huang, R.H. Liu, and L.D. Chen, J. Alloy. Compd. 509, 1101 (2011).

    Article  Google Scholar 

  12. K.H. Park, Y.S. Lim, W.S. Seo, and I.H. Kim, J. Korean Phys. Soc. 63, 1764 (2013).

    Article  Google Scholar 

  13. G. Hanninger, H. Ipser, P. Terzieff, and K.L. Komarek, J. Less-Common Met. 166, 103 (1990).

    Article  Google Scholar 

  14. L.G. Akselrud, PYu Zavali, YuN Grin, V.K. Pecharski, B. Baumgartner, and E. Wölfel, Mater. Sci. Forum 133–136, 335 (1993).

    Article  Google Scholar 

  15. H.Y. Sun, S.M. Li, S.K. Feng, and H.Z. Fu, Acta Metall. Sin. 49, 682 (2013).

    Article  Google Scholar 

  16. V.D. Abulkhaev, Inorg. Mater. 35, 431 (1999).

    Google Scholar 

  17. J.C. Margerie, Metall Cast Iron 15, 546 (1974).

    Google Scholar 

  18. T. Umeda, T. Okane, and W. Kurz, Acta Mater. 44, 4209 (1996).

    Article  Google Scholar 

  19. X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, S.Q. Bai, Y.Z. Pei, X.Y. Li, and T. Goto, Appl. Phys. Lett. 89, 092121 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Y. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Li, X.Y., Tang, Y.S. et al. Genomic Effects of the Quenching Process on the Microstructure and Thermoelectric Properties of Yb0.3Co4Sb12 . J. Electron. Mater. 44, 1890–1895 (2015). https://doi.org/10.1007/s11664-014-3582-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3582-7

Keywords

Navigation