Skip to main content
Log in

Structural, Ferroelectric, and Electrical Properties of NiTiO3 Ceramic

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The solid-state reaction route was used to prepare polycrystalline samples of NiTiO3. Basic x-ray structural analysis confirmed the formation of a single-phase compound with rhombohedral crystal structure. Study of surface morphology showed that the sample had well-defined grains with uniform distribution throughout the surface. The permittivity, tangent loss, electrical modulus, conductivity, and impedance of the material were obtained over wide ranges of temperature (25°C to 500°C) and frequency (1 kHz to 1 MHz). Strong correlation between the electrical parameters and microstructure (bulk, grain boundary, nature of charge carrier, etc.) of the material has been established. The dielectric parameters are found to be independent of temperature in both low and medium temperature ranges. The temperature-dependent bulk resistance and IV characteristics exhibit negative temperature coefficient of resistance behavior of the material similar to that of semiconductors. The magnetic hysteresis loop revealed that the NiTiO3 ceramic displays antiferromagnetic behavior with weak ferromagnetism at room temperature. The frequency dependence of the electrical modulus and impedance of the material shows deviation from ideal Debye-type relaxation. The frequency and temperature dependence of the alternating-current (AC) conductivity and activation energy of the system obey Jonscher’s universal power law with non-Debye type of relaxation. The nature of the hysteresis loop shows that the material has ferroelectric characteristics at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Dharmaraj, H.C. Park, C.K. Kim, H.Y. Kim, and D.R. Lee, Mater. Chem. Phys. 87, 5 (2004).

    Article  Google Scholar 

  2. T. Kazuyuki, U. Yasuo, T. Shuji, I. Takashi, and U. Akifumi, J. Am. Chem. Soc. 106, 5172 (1984).

    Article  Google Scholar 

  3. D.U. Kim and M.S. Gong, Sens. Actuators B Chem. 110, 321 (2005).

    Article  Google Scholar 

  4. J.J. Stickler and G.S. Heller, J. Appl. Phys. 33, 1302 (1962).

    Article  Google Scholar 

  5. G.S. Heller, J.J. Stickler, S. Kern, and A. Wold, J. Appl. Phys. 34, 1033 (1963).

    Article  Google Scholar 

  6. J.B. Goodenough and J.J. Stickler, Phys. Rev. 164, 785 (1967).

    Article  Google Scholar 

  7. X.F. Chu, X.Q. Liu, G.Z. Wang, and G.Y. Meng, Mater. Res. Bull. 34, 1789 (1999).

    Article  Google Scholar 

  8. M.S. Sadjadi, M. Mozaffari, M. Enhessari, and K. Zare, Superlattices Microstruct. 47, 685 (2010).

    Article  Google Scholar 

  9. C.L. Huang, J.Y. Chen, and G.S. Huang, J. Alloys Compd. 499, 48 (2010).

    Article  Google Scholar 

  10. P.S. Anjana and M.T. Sebastian, J. Am. Ceram. Soc. 89, 2114 (2006).

    Google Scholar 

  11. H. Wendt and G. Imarisio, J. Appl. Electrochem. 18, 1 (1988).

    Article  Google Scholar 

  12. H. Wendt and G. Imarisio, J. Solid State Chem. 17, 299 (1976).

    Article  Google Scholar 

  13. C.J. Fennie, Phys. Rev. Lett. 100, 167203 (2008).

    Article  Google Scholar 

  14. Y. Ni, X. Wang, and J. Hong, Mater. Res. Bull. 44, 1797 (2009).

    Article  Google Scholar 

  15. K.P. Lopes, L.S. Cavalcante, A.Z. Simoes, J.A. Varela, E. Longo, and E.R. Leite, J. Alloys Compd. 468, 327 (2009).

    Article  Google Scholar 

  16. A.R. Phani and S. Satucci, Thin Solid Films 396, 1 (2001).

    Article  Google Scholar 

  17. D.Y. Taylor, P.F. Fleig, and R.A. Page, Thin Solid Films 408, 104 (2002).

    Article  Google Scholar 

  18. S. Chuang, M. Hsieh, S. Wu, H. Lin, T. Chao, and T. Hou, J. Am. Ceram. Soc. 94, 250 (2011).

    Article  Google Scholar 

  19. Y. Lin, Y. Chang, W. Yang, and B. Tsai, J. Non-Cryst. Solids 352, 789 (2006).

    Article  Google Scholar 

  20. R.S. Singh, T.H. Ansari, R.A. Singh, and B.M. Wanklyn, Mater. Chem. Phys. 40, 173 (1995).

    Article  Google Scholar 

  21. M.S. Sadjadi, K. Zare, S. Khanahmadzadeh, and M. Enhessari, Mater. Lett. 62, 3679 (2008).

    Article  Google Scholar 

  22. A. Vadivel Murugan, V. Samuel, S.C. Navale, and V. Ravi, Mater. Lett. 60, 1791 (2006).

    Article  Google Scholar 

  23. S. Yuvaraj, V.D. Nithya, K. Saiadali Fathima, C. Sanjeeviraja, G. Kalai Selvan, S. Arumugam, and R. Kalai Selvan, Mater. Res. Bull. 48, 1110 (2013).

    Article  Google Scholar 

  24. POWDMULT: An Interactive Powder Diffraction Data Interpretation and Indexing Program Version 2.1, E. Wu, School of Physical Sciences, Flinders University of South Australia, Bradford Park, SA 5042, Australia.

  25. M.A. El-Fattah Gabal, Y.M. Al Angari, and A. Yousef Obaid, C. R. Chim. 16, 704 (2013).

    Article  Google Scholar 

  26. S.-H. Chuang, M.-L. Hsieh, and D.-Y. Wang, J. Chin. Chem. Soc. 59, 628 (2012).

    Article  Google Scholar 

  27. R. Vijayalakshmi and V. Rajendran, E-J. Chem. 9, 282 (2012).

    Article  Google Scholar 

  28. K.K. Bamzai, V. Gupta, P.N. Kotru, and B.M. Wanklyn, Ferroelectrics 413, 328 (2011).

    Article  Google Scholar 

  29. L.L. Hench and J.K. West, Principles of Electronic Ceramics (New York: Wiley, 1990), p. 189.

    Google Scholar 

  30. J.C. Anderson, Dielectrics (London: Chapman and Hall, 1964).

    Google Scholar 

  31. P. Ganguli, S. Devi, A.K. Jha, and K.L. Deori, Ferroelectrics 381, 111 (2009).

    Article  Google Scholar 

  32. P. Kumar, S. Singh, J.K. Juneja, C. Prakash, and K.K. Raina, Ferroelectr. Lett. 37, 110 (2010).

    Article  Google Scholar 

  33. J. Rout, B.N. Parida, P.R. Das, and R.N.P. Choudhary, J. Electron. Mater. 43, 732 (2014).

    Article  Google Scholar 

  34. R.N.P. Choudhary, C. Behera, P.R. Das, and R.R. Das, Ceram. Int. 40, 12253 (2014).

    Article  Google Scholar 

  35. M.A.L. Nobre and S. Lanfredi, J. Appl. Phys. 93, 5557 (2003).

    Article  Google Scholar 

  36. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, and R.S. Katiyar, J. Appl. Phys. 106, 024102 (2009).

    Article  Google Scholar 

  37. C. Behera, P.R. Das, and R.N.P. Choudhary, J. Electron. Mater. 43, 3539 (2014).

    Article  Google Scholar 

  38. T. Badapanda, V. Senthil, S.K. Rout, S. Panigrahi, and T.P. Sinha, Mater. Chem. Phys. 133, 863 (2012).

    Article  Google Scholar 

  39. B. Behera, P. Nayak, and R.N.P. Choudhary, J. Alloys Compd. 436, 226 (2007).

    Article  Google Scholar 

  40. S. Dash, R. Padhee, P.R. Das, and R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 24, 3315 (2013).

    Google Scholar 

  41. A.K. Jonscher, Nature 267, 673 (1977).

    Article  Google Scholar 

  42. B. Pati, B.C. Sutar, B.N. Parida, P.R. Das, and R.N.P. Choudhury, J. Mater. Sci.: Mater. Electron. 24, 1608 (2013).

    Google Scholar 

  43. N.F. Mott and E.A. Davis, Electronic Processes in Non-crystalline Materials, 2nd ed. (Oxford: Clarendon, 1979).

    Google Scholar 

  44. G.V.S. Murthy, N. Parveen, and C.R.V.S. Nagesh, International Mineral Processing Congress, Paper No. 1016.

  45. J. Mona, S.N. Kale, A.B. Gaikwad, A. Vadivel Murugan, and V. Ravi, Mater. Lett. 60, 1425 (2006).

    Article  Google Scholar 

  46. A.T. Raghavender, N.H. Hong, K.J. Lee, M.-H. Jung, Z. Skoko, M. Vasilevskiy, M.F. Cerqueira, and A.P. Samantilleke, J. Magn. Magn. Mater. 331, 129 (2013).

    Article  Google Scholar 

  47. A.M. Aŕevalo-Ľopez and J.P. Attfield, Phys. Rev. B 88, 104416 (2013).

    Article  Google Scholar 

  48. M. Enhessari, A. Parviz, E. Karamali, and K. Ozaee, J. Exp. Nanosci. 7, 327 (2012).

    Article  Google Scholar 

  49. R.S. Singh, T.H. Ansari, and R.A. Singh, Proc. Indian Natl. Sci. Acad. 61, 425 (1995).

    Google Scholar 

  50. B. Zhang, T. Katsura, A. Shatskiy, T. Matsuzaki, and W. Xiaoping, Phys. Rev. B 73, 134104 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Truptimayee Acharya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, T., Choudhary, R.N.P. Structural, Ferroelectric, and Electrical Properties of NiTiO3 Ceramic. J. Electron. Mater. 44, 271–280 (2015). https://doi.org/10.1007/s11664-014-3426-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3426-5

Keywords

Navigation