Skip to main content
Log in

Pressureless Bonding by Use of Cu and Sn Mixed Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Because of high thermal and electrical conductivity, high melting point, and low cost, bonding by sintering of Cu nanoparticles is promising as a new method to replace the Pb-rich solders currently used in high-temperature applications. However, it is difficult to achieve sufficient strength by using this method because, in the absence of applied pressure, oxidized surfaces inhibit sintering. In this study, we report pressureless bonding of Cu plates with Ni layers by use of Cu and Sn mixed nanoparticles. Bonding was achieved without pressure from 250°C to 350°C in hydrogen by use of pure Cu nanoparticles, and by using mixtures of Cu and Sn nanoparticles in which the amount of Sn varied from 10 to 50 wt.%. The highest strength bonds were obtained by use of Cu–10 wt.% Sn mixed nanoparticles, because the sinterability of the Cu nanoparticles is enhanced by diffusion of Sn into Cu to form an appropriate amount of Cu–Sn intermetallic compounds (IMC) and diminish microvoids. However, when the amount of Sn was greater than 10 wt.%, Cu–Sn IMC were formed to such an extent that the significant reduction of Cu-rich layers led to reduced strength. When the bonding temperature was 350°C, Sn diffused into Cu so much that microvoids were formed in the Sn-rich layer. Because the number of microvoids increased as the amount of Sn was increased, the shear strength could not be enhanced by bonding at higher temperature when the amount of Sn was greater than 30 wt.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Suganuma, Curr. Opini. Solid. State Mater. Sci. 5, 55 (2001).

    Article  Google Scholar 

  2. S. Kim, K.-S. Kim, S.-S. Kim, K. Suganuma, and G. Izuta, J. Electron. Mater. 38, 2668 (2009).

    Article  Google Scholar 

  3. S. Kim, K.-S. Kim, S.-S. Kim, K. Suganuma, and G. Izuta, J. Electron. Mater. 38, 873 (2009).

    Article  Google Scholar 

  4. Y. Yamada, Y. Takaku, Y. Yagi, I. Nakagawa, T. Atsumi, M. Shirai, I. Ohmuna, and K. Ishida, Trans. JIEP 2, 79 (2009).

    Google Scholar 

  5. Y. Yamada, Y. Takaku, Y. Yagi, I. Nakagawa, T. Atsumi, M. Shirai, I. Ohmuna, and K. Ishida, Microelectron. Reliab. 47, 2147 (2007).

    Article  Google Scholar 

  6. K. Moon, H. Dong, R. Maric, S. Pothkuchi, A. Hunt, Y. Li, and C.P. Wong, J. Electron. Mater. 34, 168 (2005).

    Article  Google Scholar 

  7. K.S. Siow, J. Electron. Mater. 43, 947 (2014).

    Article  Google Scholar 

  8. K.S. Siow, J. Alloys Comp. 514, 6 (2012).

    Article  Google Scholar 

  9. E. Ide, S. Angata, A. Hirose, and K.F. Kobayashi, Acta Mater. 53, 2385 (2005).

    Article  Google Scholar 

  10. J.G. Bai and G.-Q. Lu, IEEE Trans. Dev. Mater. Reliab. 6, 436 (2006).

    Article  Google Scholar 

  11. P.O. Quintero and F.P. McCluskey, IEEE Trans. Dev. Mater. Reliab. 11, 531 (2011).

    Article  Google Scholar 

  12. A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, and C.X. Xu, Appl. Phys. Lett. 97, 153117 (2010).

    Article  Google Scholar 

  13. H. Alarifi, A. Hu, M. Yavuz, and Y.N. Zhou, J. Electron. Mater. 40, 1394 (2011).

    Article  Google Scholar 

  14. K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.-S. Kim, and M. Nogi, Microelectron. Reliab. 52, 375 (2012).

    Article  Google Scholar 

  15. Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, and M. Nakamoto, J. Electron. Mater. 39, 1283 (2010).

    Article  Google Scholar 

  16. Y. Kobayashi, T. Shirochi, Y. Yasuda, and T. Morita, Solid State Sci. 13, 553 (2011).

    Article  Google Scholar 

  17. Y. Kobayashi, T. Shirochi, Y. Yasuda, and T. Morita, Inter. J. Adhes. Adhes. 33, 50 (2012).

    Article  Google Scholar 

  18. J. Yan, G. Zou, A. Hu, and Y.N. Zhou, J. Mater. Chem. 21, 15981 (2011).

    Article  Google Scholar 

  19. T. Ishizaki and R. Watanabe, J. Mater. Chem. 22, 25198 (2012).

    Article  Google Scholar 

  20. H. Nishikawa, T. Hirano, T. Takemoto, and N. Terada, Open Surf. Sci. J. 3, 60 (2011).

    Article  Google Scholar 

  21. T. Yamakawa, T. Takemoto, M. Shimoda, H. Nishikawa, K. Shiokawa, and N. Terada, J. Electron. Mater. 42, 1260 (2013).

    Article  Google Scholar 

  22. G. Q. Lu, J. N. Calata, G. Y. Lei and X. Chen, EuroSimE 2007: 8th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems, 609 (2007).

  23. Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, M. Nakamoto, H. Kakiuchi, and Y. Yoshida, J. Electron. Mater. 40, 2398 (2011).

    Article  Google Scholar 

  24. R. Durairaj, R. Ashayer, H. R. Kotadia, N. Haria, C. Lorenz, O. Mokhtari and S. H. Mannan, 12th IEEE International Conference on Nanotechnology, 39 (2012).

  25. T. Ishizaki, K. Akedo, T. Satoh, and R. Watanabe, J. Electron. Mater. 43, 774 (2014).

    Article  Google Scholar 

  26. T. Satoh, K. Akedo, and T. Ishizaki, J. Alloy Compd. 582, 403 (2014).

    Article  Google Scholar 

  27. R. Watanabe and T. Ishizaki, Bull. Chem. Soc. Jpn 86, 642 (2013).

    Article  Google Scholar 

  28. T. Ishizaki, T. Satoh, A. Kuno, A. Tane, M. Yanase, F. Osawa, and Y. Yamada, Microelectron. Reliab. 53, 1543 (2013).

    Article  Google Scholar 

  29. J.Y. Kim, J.A. Rodriguez, J.C. Hanson, A.I. Frenkel, and P.L. Lee, J. Am. Chem. Soc. 125, 10684 (2003).

    Article  Google Scholar 

  30. J.T. Richardson, R. Scates, and M.V. Twigg, Appl. Catal. A 246, 137 (2003).

    Article  Google Scholar 

  31. B. Janković, B. Adnađević, and S. Mentus, Chem. Eng. Sci. 63, 567 (2008).

    Article  Google Scholar 

  32. J.A. Rodriguez, J.C. Hanson, A.I. Frenkel, J.Y. Kim, and M. Pérez, J. Am. Chem. Soc. 124, 346 (2002).

    Article  Google Scholar 

  33. U. Tilliander, R.E. Aune, and S. Seetharaman, Z. Metallkd. 97, 72 (2006).

    Google Scholar 

  34. J.F. Li, P.A. Agyakwa, and C.M. Johnson, Acta Mater. 59, 1198 (2011).

    Article  Google Scholar 

  35. T. Fujimoto, T. Ogura and A. Hirose, Mate 2014: 20th Symposium on Microjoining and Assembly Technology in Electronics, 131 (2014) (in Japanese).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshitaka Ishizaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishizaki, T., Watanabe, R. Pressureless Bonding by Use of Cu and Sn Mixed Nanoparticles. J. Electron. Mater. 43, 4413–4420 (2014). https://doi.org/10.1007/s11664-014-3368-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3368-y

Keywords

Navigation