Skip to main content
Log in

Improvement of Thermoelectric Performance for Sb-Doped SnO2 Ceramics Material by Addition of Cu as Sintering Additive

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The thermoelectric properties, such as the Seebeck coefficient value, S, electrical conductivity, σ, and thermal conductivity, κ, of Sb- and Cu-doped SnO2, that is, (Sn1−xy Cu x Sb y )O2, were investigated in detail. The addition of a small amount of CuO significantly improved the relative density of the SnO2 ceramics. However, the relative density slightly decreased with the excessive addition of CuO (more than x = 0.03). The addition of Sb2O5 should cause an increase in the number of charge carriers, resulting in an increased σ value, and the addition of both CuO and Sb2O5 caused an increase in σ and |S| at high temperature. The improvement of the sintering performance caused the enhancement of the thermoelectric performance. As the temperature region measured in this study (293–1073 K), the maximum ZT value was 0.29 at 1073 K for (Sn0.985Cu0.005Sb0.01)O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Fergus, J. Eur. Ceram. Soc. 32, 525 (2012).

    Article  Google Scholar 

  2. M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, J. Appl. Phys. 79, 1816 (1996).

    Article  Google Scholar 

  3. T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, J. Mater. Chem. 7, 85 (1997).

    Article  Google Scholar 

  4. H. Ohta, W.S. Seo, and K. Koumoto, J. Am. Ceram. Soc. 79, 2193 (1996).

    Article  Google Scholar 

  5. Y. Tanaka, T. Ifuku, and K. Tsuchida, J. Mater. Sci. Lett. 16, 155 (1997).

    Article  Google Scholar 

  6. M. Sondergaard, E.D. Bojesen, K.A. Borup, S. Christensen, M. Christensen, and B.B. Iversen, Acta Mater. 61, 3314 (2013).

    Article  Google Scholar 

  7. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B56, 12685 (1997).

    Article  Google Scholar 

  8. K. Kurosaki, H. Muta, and M. Uno, J. Alloys Compd. 315, 234 (2001).

    Article  Google Scholar 

  9. S. Tajima, T. Tani, and S. Isobe, Mater. Sci. Eng. B86, 20 (2001).

    Article  Google Scholar 

  10. M.B. Dutt, R. Banerjee, and A.K. Barua, Phys. Status Solidi A65, 365 (1981).

    Article  Google Scholar 

  11. L. Li, Y. Liu, X. Qin, D. Li, J. Zhang, C. Song, and L. Wang, J. Alloys Compd. 588, 562 (2014).

    Article  Google Scholar 

  12. M.T. Buscaglia, F. Maglia, U. Anselmi-Tamburini, D. Marré, I. Pallecchid, A. Ianculescue, G. Canua, M. Viviania, M. Fabriziof, and V. Buscaglia, J. Eur. Ceram. Soc. 34, 307 (2014).

    Article  Google Scholar 

  13. D. Kenfaui, B. Lenoir, D. Chateigner, B. Ouladdiaf, M. Gomina, and J.G. Noudem, J. Eur. Ceram. Soc. 32, 2405 (2012).

    Article  Google Scholar 

  14. T. Tsubota, T. Ohno, N. Shiraishi, and Y. Miyazaki, J. Alloys Compd. 463, 288 (2008).

    Article  Google Scholar 

  15. S. Yanagiya, N.V. Nong, J. Xu, M. Sonne, and N. Pryds, J. Electron. Mater. 40, 674 (2011).

    Article  Google Scholar 

  16. N. Dolet, J.M. Heintz, L. Rabardel, M. Onillon, and J.P. Bonnet, J. Mater. Sci. 30, 365 (1995).

    Article  Google Scholar 

  17. C.M. Wang, J.F. Wang, Y. Zhao, and W.B. Su, J. Phys. D Appl. Phys. 39, 1684 (2006).

    Article  Google Scholar 

  18. C.M. Wang, J.F. Wang, C.L. Wang, H.C. Chen, W.B. Su, G.Z. Zang, and P. Qi, J. Appl. Phys. 97, 126103 (2005).

    Article  Google Scholar 

  19. C.B. Vining, J. Appl. Phys. 69, 331 (1991).

    Article  Google Scholar 

  20. G.A. Slack and M.A. Hussain, J. Appl. Phys. 70, 2294 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiki Tsubota.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsubota, T., Kobayashi, S., Murakami, N. et al. Improvement of Thermoelectric Performance for Sb-Doped SnO2 Ceramics Material by Addition of Cu as Sintering Additive. J. Electron. Mater. 43, 3567–3573 (2014). https://doi.org/10.1007/s11664-014-3227-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3227-x

Keywords

Navigation