Skip to main content
Log in

Defects Study in Hg x Cd1−x Te Infrared Photodetectors by Deep Level Transient Spectroscopy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

At high temperature, infra-red focal plane arrays are limited by their performance in operability, detectivity D * or noise equivalent temperature difference. Trap characterization and defect studies are necessary to better understand these limitations at high temperature. In this paper, we use deep level transient spectroscopy to study electrically active defects in mercury cadmium telluride n +/p diodes. The material investigated has a cut-off frequency (λ c) of 2.5 μm at 180 K and p doping performed with mercury vacancy. Trap energy signatures as well as capture cross-section measurements are detailed. A low temperature hole trap close to midgap is observed in the range 150–200 K with an activation energy around 0.18 ± 0.025 eV. A high temperature hole trap is also observed in the range 240–300 K with an activation energy of 0.68 ± 0.06 eV. A hole capture cross-section of 10−19 cm2 is obtained for both traps. The nature of the defects and their correlation with dark current are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.V. Lang, J. Appl. Phys. 45, 3022 (1974).

    Google Scholar 

  2. S.D. Brotherton and P. Bradley, J. Appl. Phys. 53, 5720 (1982).

    Article  Google Scholar 

  3. L. Dobaczewski, K. Koscinski, K. Bonde Nielsen, A. Nylandsted Larsen, J. Lundsgaard Hansen, and A.R. Peaker, Phys. Rev. Lett. 83, 4582 (1999).

    Article  Google Scholar 

  4. F.D. Auret and M. Nel, Appl. Phys. Lett. 48, 130 (1986).

    Article  Google Scholar 

  5. D.L. Polla and C.E. Jones, J. Appl. Phys. 52, 5118 (1981).

    Article  Google Scholar 

  6. D.L. Polla, M.B. Reine, and C.E. Jones, J. Appl. Phys. 52, 5132 (1981).

    Article  Google Scholar 

  7. K. Ikeda and H. Takoaka, Jpn. J. Appl. Phys. 21, 462 (1982).

    Article  Google Scholar 

  8. S. Weiss and R. Kassing, Solid State Electron. 31, 1733 (1988).

    Article  Google Scholar 

  9. A.A. Istratov, O.F. Vyvenko, H. Hieslmair, and E.R. Weber, Meas. Sci. Technol. 9, 477 (1998).

    Article  Google Scholar 

  10. L. Dobaczewski, K. Koscinski, I.D. Hawkins, and A.R. Peaker, J. Appl. Phys. 76, 194 (1994).

    Article  Google Scholar 

  11. W.C. Johnson and P.T. Panousis, IEEE Trans. Electron. Devices 18, 965 (1971).

    Article  Google Scholar 

  12. P.I. Rocket and A.R. Peaker, Electron. Lett. 17, 838 (1981).

    Article  Google Scholar 

  13. J.A. Van Vechten and C.D. Thurmond, Phys. Rev. B 14, 3529 (1976).

    Google Scholar 

  14. M.A. Kinch, F. Agariden, D. Chandra, P.K. Liao, H.F. Schaake, and H.D. Shih, J. Electron. Mater. 34, 880 (2005).

    Article  Google Scholar 

  15. M. Lax, Phys. Rev. 119, 1502 (1960).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Rubaldo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubaldo, L., Brunner, A., Berthoz, J. et al. Defects Study in Hg x Cd1−x Te Infrared Photodetectors by Deep Level Transient Spectroscopy. J. Electron. Mater. 43, 3065–3069 (2014). https://doi.org/10.1007/s11664-014-3226-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3226-y

Keywords

Navigation