Skip to main content
Log in

Identifying defect energy levels using DLTS under different electron irradiation conditions

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Electron beams of 0.5, 1.5, 2.0, and 5.0 MeV were used to irradiate n-Si diodes to fluences of 5.5 × 1013, 1.7 × 1014, and 3.3 × 1014 e cm−2. The forward voltage drop, minority carrier lifetime, and deep level transient spectroscopy (DLTS) characteristics of silicon p–n junction diodes before and after irradiation were compared. At the fluence of 3.3 × 1014 e cm−2, the forward voltage drop increased from 1.25 V at 0.5 MeV to 7.96 V at 5.0 MeV, while the minority carrier lifetime decreased significantly from 7.09 μs at 0.5 MeV to 0.06 μs at 5. 0 MeV. Six types of changes in the energy levels in DLTS spectra were analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.O. Carlson, Y.S. Sun, H.B. Assalit, Lifetime control in silicon power devices by electron or gamma irradiation. IEEE Trans. Electron Devices 24, 1103–1108 (1977). https://doi.org/10.1109/T-ED.1977.18884

    Article  Google Scholar 

  2. B.J. Baliga, E. Sun, Comparison of gold, platinum, and electron irradiation for controlling lifetime in power rectifiers. IEEE Trans. Electron Devices 24, 685–688 (1977). https://doi.org/10.1109/T-ED.1977.18803

    Article  Google Scholar 

  3. C. Codreanu, E. Iliescu, V. Obreja, Silicon diode electrical characteristics under electron-beam irradiation conditions-experiments and theoretical interpretation, in IEEE semiconductor conference CAS 2001 proceedings international, vol. 2001, pp. 481–484 (2001). https://doi.org/10.1109/SMICND.2001.967510

  4. L. Pína, J. Vobecký, High-power silicon P–i–N diode with cathode shorts: the impact of electron irradiation. Microelectron. Reliab. 53, 681–686 (2013). https://doi.org/10.1016/j.microrel.2013.02.008

    Article  Google Scholar 

  5. S. Krishnan, G. Sanjeev, M. Pattabi, Electron irradiation effects on the Schottky diode characteristics of p-Si. Nucl. Instrum. Methods Phys. Res. 266, 621–624 (2008). https://doi.org/10.1016/j.nimb.2007.11.049

    Article  Google Scholar 

  6. J. Vobecký, P. Hazdra, V. Záhlava, Impact of the electron, proton and helium irradiation on the forward IV, characteristics of high-power P–i–N diode. Microelectron. Reliab. 43, 537–544 (2003). https://doi.org/10.1016/S0026-2714(03)00023-4

    Article  Google Scholar 

  7. B. Zhao, Y. Jia, Y. Wu et al., Influence of platinum diffusion electron irradiation on performance of FRDs. Semicond. Technol. 2016, 37–41 (2016). https://doi.org/10.13290/j.cnki.bdtjs.2016.01.007

    Google Scholar 

  8. U.L. Dong, E.K. Kim, B.C. Lee et al., Characterization of electron irradiated GaN n+-p diode. Thin Solid Films 516, 3482–3485 (2008). https://doi.org/10.1016/j.tsf.2007.08.050

    Article  Google Scholar 

  9. H. Ohyama, T. Hirao, E. Simoen et al., Impact of lattice defects on the performance degradation of Si photodiodes by high-temperature gamma and electron irradiation. Physica B 308, 1226–1229 (2001). https://doi.org/10.1016/S0921-4526(01)00949-8

    Article  Google Scholar 

  10. K. Takakura, H. Ohyama, T. Yoshida et al., Comparison of electron irradiation effect on thermal donors in Cz and oxygen doped Fz silicon. Physica B 340, 1022–1025 (2003). https://doi.org/10.1016/j.physb.2003.09.115

    Article  Google Scholar 

  11. N. Zangenberg, J.J. Goubet, A.N. Larsen, On-line DLTS investigations of the mono- and di-vacancy in p-type silicon after low temperature electron irradiation. Nucl. Instrum. Methods Phys. Res. 186, 71–77 (2002). https://doi.org/10.1016/S0168-583X(01)00876-X

    Article  Google Scholar 

  12. S.M. Kang, T.J. Eom, S.J. Kim et al., Reverse recovery characteristics and defect distribution in an electron-irradiated silicon pn junction diode. Mater. Chem. Phys. 84, 187–191 (2004). https://doi.org/10.1016/j.matchemphys.2003.11.030

    Article  Google Scholar 

  13. L.L. Cai, Investigation of the Effect of Electron Irradiated Defects in Czochralski Silicon. M.S. Thesis, Hebei University of Technology (2007)

  14. X.W. Ma, Effect of Electron Irradiation on the Properties of Monocrystalline Silicon. M.S. Thesis, Hebei University of Technology (2010)

  15. M. Lv, X.L. Zhang, Y.X. Zhang et al., Ionizing irradiation effects for emitter perimeter area ratios of the bipolar transistor. Semicond. Technol. 2013, 222–226 (2013). https://doi.org/10.3969/j.issn.1003-353x.2013.03.013

    Google Scholar 

  16. P. Hazdra, J. Vobecký, H. Dorschner et al., Axial lifetime control in silicon power diodes by irradiation with protons, alphas, low- and high-energy electrons. Microelectron. J. 35, 249–257 (2004). https://doi.org/10.1016/S0026-2692(03)00194-0

    Article  Google Scholar 

  17. D.V. Lang, Fast capacitance transient appartus: application to ZnO and O centers in GaP pn junctions. J. Appl. Phys. 45, 3014–3022 (1974). https://doi.org/10.1063/1.1663718

    Article  Google Scholar 

  18. M. Schulz, N.M. Johnson, Evidence for multiphonon emission from interface states in MOS structures. Solid State Commun. 25, 481–484 (1978). https://doi.org/10.1016/0038-1098(78)90162-X

    Article  Google Scholar 

  19. K.L. Wang, A determination of interface state energy during the capture of electrons and holes using DLTS. IEEE Trans. Electron Devices 26, 819–821 (1979). https://doi.org/10.1109/T-ED.1979.19503

    Article  Google Scholar 

  20. G.D. Watkins, J.W. Corbett, Defects in irradiated silicon: electron paramagnetic resonance of the divacancy. Phys. Rev. 138, 543–555 (1965). https://doi.org/10.1103/PhysRev.138.A543

    Article  Google Scholar 

  21. Ö. Güllü, Ş. Aydoğan, K. Şerifoğlu et al., Electron irradiation effects on the organic-on-inorganic silicon Schottky structure. Nucl. Instrum. Methods Phys. Res. 593, 544–549 (2008). https://doi.org/10.1016/j.nima.2008.05.043

    Article  Google Scholar 

  22. Z.L. Chen, W. Yue, Z.L. Li et al., Improvement on reverse breakdown characteristics of the bipolar switching transistor by the electron irradiation. Semicond. Technol. 2014, 943–946 (2014). https://doi.org/10.13290/j.cnki.bdtjs.2014.12.012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Sheng Guo.

Additional information

This work was supported by the Beijing education and scientific research department (No. KM201510005008).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, CS., Wang, RM., Zhang, YW. et al. Identifying defect energy levels using DLTS under different electron irradiation conditions. NUCL SCI TECH 28, 183 (2017). https://doi.org/10.1007/s41365-017-0331-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0331-7

Keywords

Navigation