Skip to main content
Log in

Effect of Thermal Annealing on the Characteristics of Phosphorus-Implanted ZnO Crystals

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A P-doped ZnO surface layer on undoped ZnO wafers was prepared by phosphorus (P) ion implantation. Hall effect measurement revealed p-type conduction in such layers annealed at 800°C. This indicates that acceptor levels are present in P-doped ZnO, even though the ZnO is still n-type. Micro-Raman scattering in −z(xy)z geometry was conducted on P-implanted ZnO. The E high2 mode shift observed toward the high-energy region was related to compressive stress as a result of P-ion implantation. This compressive stress led to the appearance of an A 1(LO) peak, which is an inactive mode. This A 1(LO) peak relaxed during thermal annealing in ambient oxygen at temperatures higher than 700°C. The P2p3/2 peak observed at 135.6 eV by x-ray photoelectron spectroscopy is associated with chemical bond formation leading to 2(P2O5) molecules. This indicates that implanted P ions substituted Zn sites in the ZnO layer. In photoluminescence spectroscopy, the P-related peaks observed at energies ranging between 3.1 and 3.5 eV originated from (A0, X) emission, because of PZn-2VZn complexes acting as shallow acceptors. The acceptor level was observed to be 126.9 meV above the valence band edge. Observation of this P-related emission indicates that ion implantation results in acceptor levels in the P-doped ZnO layer. This suggests that the P2O5 bonds are responsible for the p-type activity of P-implanted ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, and T. Goto, Appl. Phys. Lett. 70, 2230 (1977).

    Article  Google Scholar 

  2. K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett. 79, 988 (2001).

    Article  Google Scholar 

  3. Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).

    Article  Google Scholar 

  4. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, M.Y. Shen, and T. Goto, Appl. Phys. Lett. 73, 1038 (1998).

    Article  Google Scholar 

  5. N.T. Huong, N.V. Tuyen, and N.H. Hong, Mater. Chem. Phys. 126, 54 (2011).

    Article  Google Scholar 

  6. Y.R. Ryu, S. Zhu, D.C. Look, J.M. Wrobel, H.M. Jeong, and H.W. White, J. Cryst. Growth 216, 330 (2000).

    Article  Google Scholar 

  7. T.S. Jeong, M.S. Han, C.J. Youn, and Y.S. Park, J. Appl. Phys. 96, 175 (2004).

    Article  Google Scholar 

  8. G. Xiong, K.B. Ucer, T.R. Williams, J. Lee, D. Bhattacharya, J. Metson, and P. Evants, J. Appl. Phys. 97, 043528 (2005).

    Article  Google Scholar 

  9. P. Wang, N. Chen, Z. Yin, R. Dai, and Y. Bai, Appl. Phys. Lett. 89, 202102 (2006).

    Article  Google Scholar 

  10. S. Limpijummong, S.B. Zhang, S.-H. Wei, and C.H. Park, Phys. Rev. Lett. 92, 155504 (2004).

    Article  Google Scholar 

  11. J.C. Fan, K.M. Sreekanth, Z. Xie, S.L. Chang, and K.V. Rao, Prog. Mater. Sci. 58, 874 (2013).

    Article  Google Scholar 

  12. M.-S. Oh, D.-K. Hwang, Y.-S. Choi, J.-W. Kang, S.-J. Park, C.-S. Hwang, and K.I. Cho, Appl. Phys. Lett. 93, 111905 (2008).

    Article  Google Scholar 

  13. Y.T. Shih, J.F. Chien, M.J. Chen, J.R. Yang, and M. Shiojiri, J. Electrochem. Soc. 158, H516 (2011).

    Article  Google Scholar 

  14. F.X. Xiu, Z. Yang, L.J. Mandalapu, J.L. Liu, and W.P. Beyermann, Appl. Phys. Lett. 88, 052106 (2006).

    Article  Google Scholar 

  15. S.J. Kang, Y.H. Joung, J.W. Han, and Y.S. Yoon, J. Mater. Sci. Mater. Electron 22, 248 (2011).

    Article  Google Scholar 

  16. V. Vaithianathan, S. Hishita, J.Y. Park, and S.S. Kim, J. Appl. Phys. 102, 08617 (2007).

    Article  Google Scholar 

  17. M.R. Wagner, U. Haboeck, P. Zimmer, A. Hoffmann, S. Lautenschläger, C. Neumann, J. Sann, and B.K. Meyer, Proc. SPIE 6474, 64740X (2007).

    Article  Google Scholar 

  18. J.N. Zeng, J.K. Low, Z.M. Ren, T. Liew, and Y.F. Lu, Appl. Surf. Sci. 197, 362 (2002).

    Article  Google Scholar 

  19. S. Sahoo, S. Dhara, S. Mahadevan, and A.K. Arora, J. Nanosci. Nanotechnol. 9, 5604 (2009).

    Article  Google Scholar 

  20. C.J. Youn, T.S. Jeong, M.S. Han, and J.H. Kim, J. Cryst. Growth 261, 526 (2004).

    Article  Google Scholar 

  21. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Vol. 2, ed. J. Chastain (Minnesota: Perkin-Elmer Corporation, 1992),

    Google Scholar 

  22. C.H. Park, S.B. Zhang, and S.-H. Wei, Phys. Rev. B 66, 073202 (2002).

    Article  Google Scholar 

  23. W.J. Lee, J.G. Kang, and K.J. Chang, Phys. Rev. B 73, 024117 (2006).

    Article  Google Scholar 

  24. O. Madelung, Numerical Data and Functional Relationships in Science and Technology, Vol. 17b, ed. Landolt-Börnstein and New Series, Group III (Berlin: Springer, 1982),

    Google Scholar 

  25. V. Vaithianathan, Y.H. Lee, B.-T. Lee, S. Hishita, and S.S. Kim, J. Cryst. Growth 287, 85 (2006).

    Article  Google Scholar 

  26. D.-K. Hwang, H.-S. Kim, J.-H. Lim, J.-Y. Oh, J.-H. Yang, and S.-J. Park, Appl. Phys. Lett. 86, 151917 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Youn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, T.S., Yu, J.H., Mo, H.S. et al. Effect of Thermal Annealing on the Characteristics of Phosphorus-Implanted ZnO Crystals. J. Electron. Mater. 43, 2688–2693 (2014). https://doi.org/10.1007/s11664-014-3136-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3136-z

Keywords

Navigation