Skip to main content
Log in

New Understanding on Relationship Between RTD Curve and Inclusion Behavior in the Tundish

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The inclusion behavior depends on the turbulent flow in the tundish. To make a deep understanding on the relation between flow field and inclusion behavior, the residence time distribution (RTD) curve is applied to analyze the flow field, the inclusion mass/population conservation model is applied to explore the inclusion behavior, and Pearson correlation is introduced to investigate the relation of RTD curve and the inclusion coalescence-removal. The numerical flow field and the number density confirm well with the measured data. Among plug volume fraction, well-mixed volume fraction and dead volume fraction, dead volume fraction is the most important factor to affect the inclusion removal rate and the dimensionless inclusion characteristic radius. For the same control devices in a tundish, structure parameters (distance from dam/baffle to tundish exit, the diameter of the hole in the baffle) can be optimized to obtained the maximum inclusion removal rate. Such a critical state can be expressed by the ratio of plug volume fraction to well-mixed volume fraction. But the dimensionless characteristic radius may be the maximum or the minimum at this critical state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M.J. Zhao, Y. Wang, S.F. Yang, J.S. Li, W. Liu, and Z.Q. Song: J. Mater. Res. Technol., 2021, vol. 13, pp. 561–72.

    Article  CAS  Google Scholar 

  2. M.J. Zhao, Y. Wang, S.F. Yang, M.L. Ye, J.S. Li, and Y.H. Liu: Metals, 2021, vol. 11, p. 722.

    Article  CAS  Google Scholar 

  3. H. Zhang, H. Lei, C.Y. Ding, S.F. Chen, H. Niu, and B. Yang: Steel Res. Int., 2022, vol. 93, p. 2200181.

    Article  CAS  Google Scholar 

  4. B. Yang, K. Liu, H. Lei, and P. Han: High Temp. Mater. Process., 2022, vol. 41, pp. 460–68.

    Article  CAS  Google Scholar 

  5. S. Chang, Z.S. Zou, J.H. Liu, M. Isac, X.K.E. Cao, X.F. Su, and R.I.L. Guthrie: Powder Technol., 2021, vol. 387, pp. 125–35.

    Article  CAS  Google Scholar 

  6. S. Chang, W.X. Huang, Z.S. Zou, B.K. Li, and R.I.L. Guthrie: Powder Technol., 2020, vol. 367, pp. 296–304.

    Article  CAS  Google Scholar 

  7. C. Yao, M. Wang, H.H. Zhu, L.D. Xing, and Y.P. Bao: Metall. Mater. Trans. B, 2023, vol. 54B, pp. 1144–58.

    Article  Google Scholar 

  8. J.H. Wang, Q. Fang, L. Huang, P. Zhao, X.Q. Xie, and H. Zhang: Metall. Mater. Trans. B, 2023, vol. 54B, pp. 635–49.

    Article  Google Scholar 

  9. Y. Sahai and R.J.I. Ahuja: Ironmak. Steelmak., 1986, vol. 13, pp. 241–47.

    Google Scholar 

  10. Y. Sahai and T. Emi: ISIJ Int., 1996, vol. 36, pp. 667–72.

    Article  CAS  Google Scholar 

  11. Q. Wang, Y. Liu, A. Huang, W. Yan, H.Z. Gu, and G.Q. Li: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 276–92.

    Article  Google Scholar 

  12. W.X. Huang, S. Chang, Z.S. Zou, L. Shao, Y.X. Qu, and B.K. Li: Steel Res. Int., 2021, vol. 92, p. 2100012.

    Article  CAS  Google Scholar 

  13. S. Chang, L.C. Zhong, and Z.S. Zou: ISIJ Int., 2015, vol. 55, pp. 837–44.

    Article  CAS  Google Scholar 

  14. Q. Wang, Y. Liu, A. Huang, W. Yan, H.Z. Gu, and G.Q. Li: Powder Technol., 2020, vol. 367, pp. 358–75.

    Article  CAS  Google Scholar 

  15. Q. Fang, H. Zhang, R.H. Luo, C. Liu, Y. Wang, and H.W. Ni: J. Mater. Res. Technol., 2020, vol. 9, pp. 347–63.

    Article  Google Scholar 

  16. H.T. Ling, L.F. Zhang, and H.J. Wang: Metall. Res. Technol., 2017, vol. 114, p. 516.

    Article  Google Scholar 

  17. M. Tkadleckova, J. Walek, K. Michalek, and T. Huczala: Metals, 2020, vol. 10, p. 849.

    Article  CAS  Google Scholar 

  18. D.Y. Sheng and Z.S. Zou: Metals, 2021, vol. 11, p. 208.

    Article  CAS  Google Scholar 

  19. C. Liu, A.D. Xiao, Z. He, W. Yan, G.Q. Li, and Q. Wang: Steel Res. Int., 2022, vol. 93, p. 2100818.

    Article  CAS  Google Scholar 

  20. A.P. Zhang, M.M. Zhu, and J. Luo. Symposium on Materials Processing Fundamentals at Annual Meeting of The-Minerals-Metals-Materials-Society (TMS), Electronic network, March 14–18, 2021. pp. 31–41.

  21. J. Luo, S.K. Peng, A.P. Zhang, and Y. Zhong. Symposium on Materials Processing Fundamentals at Annual Meeting of The-Minerals-Metals-Materials-Society (TMS), Electronic network, March 14–18, 2021. pp. 3–12.

  22. M.R.M. Yazdi, A.R.F. Khorasani, and S. Talebi: Can. Metall. Q., 2019, vol. 58, pp. 379–88.

    Article  Google Scholar 

  23. B. Yang, H. Lei, Q. Bi, Y.Y. Xiao, and Y. Zhao: JOM, 2018, vol. 70, pp. 2950–57.

    Article  CAS  Google Scholar 

  24. H. Lei, L.Z. Wang, Z.N. Wu, and J.F. Fan: ISIJ Int., 2002, vol. 42, pp. 717–25.

    Article  CAS  Google Scholar 

  25. D.Q. Geng, J.X. Zheng, K. Wang, P. Wang, R.Q. Liang, H.T. Liu, H. Lei, and J.C. He: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1484–93.

    Article  Google Scholar 

  26. L.F. Zhang, J. Aoki, and B.G. Thomas: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 361–79.

    Article  CAS  Google Scholar 

  27. H. Lei: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2408–13.

    Article  Google Scholar 

  28. C.Y. Ding, H. Lei, S.F. Chen, H. Zhang, Y. Zhao, and Z.S. Zou: Steel Res. Int., 2022, vol. 93, p. 2200187.

    Article  CAS  Google Scholar 

  29. H. Lei, B. Yang, Q. Bi, Y.Y. Xiao, S.F. Chen, and C.Y. Ding: ISIJ Int., 2019, vol. 59, pp. 1811–19.

    Article  CAS  Google Scholar 

  30. L.F. Zhang, S. Taniguchi, and K.K. Cai: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 253–66.

    Article  CAS  Google Scholar 

  31. D.Q. Geng, H. Lei, and J.C. He: ISIJ Int., 2010, vol. 50, pp. 1597–605.

    Article  CAS  Google Scholar 

  32. M.Y. Zhu, S.G. Zheng, Z.Z. Huang, and W.P. Gu: Steel Res. Int., 2005, vol. 76, pp. 718–22.

    Article  CAS  Google Scholar 

  33. C.Y. Ding, H. Lei, H. Zhang, M. Xu, Y. Zhao, and Q. Li: J. Mater. Res. Technol., 2023, vol. 23, pp. 5400–12.

    Article  Google Scholar 

  34. H. Lei, D.Q. Geng, and J.C. He: ISIJ Int., 2009, vol. 49, pp. 1575–82.

    Article  CAS  Google Scholar 

  35. T. Mizoguchi, Y. Ueshima, M. Sugiyama, and K. Mizukami: ISIJ Int., 2013, vol. 53, pp. 639–47.

    Article  CAS  Google Scholar 

  36. C.Y. Ding, H. Lei, H. Niu, H. Zhang, B. Yang, and Y. Zhao: Metals, 2021, vol. 11, p. 430.

    Article  CAS  Google Scholar 

  37. C.Y. Ding, H. Lei, H. Niu, H. Zhang, B. Yang, and Q. Li: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 3788–804.

    Article  Google Scholar 

  38. H.T. Ling, L.F. Zhang, and H. Li: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2991–3012.

    Article  Google Scholar 

  39. S.C. Chelgani, S.S. Matin, and S. Makaremi: Measurement, 2016, vol. 94, pp. 416–22.

    Article  Google Scholar 

  40. S.S. Matin, L. Farahzadi, S. Makaremi, S.C. Chelgani, and G. Sattari: Appl. Soft Comput., 2018, vol. 70, pp. 980–87.

    Article  Google Scholar 

  41. M. Jafari, M. Golzadeh, S.Z. Shafaei, H. Abdollahi, M. Gharabaghi, and S.C. Chelgani: Processes, 2019, vol. 7, p. 653.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research is supported by the Fundamental Research Funds for the Central Universities (N2109003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Lei.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Lei, H., Zhang, H. et al. New Understanding on Relationship Between RTD Curve and Inclusion Behavior in the Tundish. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03087-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03087-1

Navigation