Skip to main content
Log in

Prediction on the Composition Distribution of Oxide Inclusions in a Tire Cord Steel Billet Using an Integrated Model

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

An integrated model was proposed in the current study to predict the composition distribution of inclusions along the thickness of a tire cord steel continuous casting billet. The thermodynamics, kinetics, fluid flow, heat transfer, solidification, and element segregation were combined in the integrated model. More accurate results were obtained using the current model compared with the published work, indicating the great importance of the kinetics and element segregation in the inclusion predication. Thermodynamic calculation showed the equilibrium composition of inclusions at 1073 K was approximately 92 wt pct SiO2–3 wt pct MnO–4 wt pct Al2O3–1 wt pct CaO, which was obviously different from measured results, even though the element segregation was premeditated, indicating the insufficiency of the thermodynamics in predicting the inclusions composition in the billet. A large positive segregation of C, Si, Mn, and S at the center of the billet was revealed, and the average segregation index was simulated to be 1.89, 1.05, 1.08, and 1.26, respectively. The strong element segregation of the steel induced a fluctuation in the composition of inclusions along billet thickness, which was more accurate compared with the model ignoring the element segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D. You, S.K. Michelic, C. Bernhard, D. Loder, and G. Wieser: ISIJ Int., 2016, vol. 56, pp. 1770–78.

    Article  CAS  Google Scholar 

  2. L. Zhang, Q. Ren, H. Duan, Y. Ren, W. Chen, G. Cheng, W. Yang, and S. Sridhar: Miner. Process. Extr. Metall., 2020, vol. 129, pp. 184–206.

    ADS  CAS  Google Scholar 

  3. Y. Wang, S. Sridhar, and M. Valdez: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 625–32.

    Article  CAS  Google Scholar 

  4. Y. Ren, L. Zhang, and P.C. Pistorius: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2281–92.

    Article  ADS  Google Scholar 

  5. L. Holappa, M. Hämäläinen, M. Liukkonen, and M. Lind: Ironmak. Steelmak., 2003, vol. 30, pp. 111–15.

    Article  CAS  Google Scholar 

  6. G. Cheng, W. Li, X. Zhang, and L. Zhang: Metals, 2019, vol. 9, p. 642.

    Article  CAS  Google Scholar 

  7. H. Goto, K. Miyazawa, K. Yamaguchi, S. Ogibayashi, and K. Tanaka: ISIJ Int., 1994, vol. 34, pp. 414–19.

    Article  Google Scholar 

  8. L. Zhang: Non-metallic Inclusions in Steels: Fundamentals (in Chinese), Metallurgical Industry Press, Beijing, 2019, pp. 669–706.

    Google Scholar 

  9. L. Zhang: Non-metallic Inclusions in Steels: Industrial Practice (in Chinese), Metallurgical Industry Press, Beijing, 2020, pp. 720–28.

    Google Scholar 

  10. H. Shibata, T. Tanaka, K. Kimura, and S.Y. Kitamura: Ironmak. Steelmak., 2010, vol. 37, pp. 522–28.

    Article  CAS  Google Scholar 

  11. J.Y. Choi, S.K. Kim, Y.B. Kang, and H.G. Lee: Steel Res. Int., 2015, vol. 86, pp. 284–92.

    Article  CAS  Google Scholar 

  12. X. Li, B. Li, Z. Liu, R. Niu, Q. Liu, X. Huang, G. Xu, and X. Ruan: Steel Res. Int., 2019, vol. 90, p. 1800423.

    Article  Google Scholar 

  13. B. Grimm, P. Andrzejewski, K. Müller, and K.H. Tacke: Steel Res. Int., 1999, vol. 70, pp. 420–29.

    Article  CAS  Google Scholar 

  14. M. Javurek, P. Gittler, R. Rössler, B. Kaufmann, and H. Preßlinger: Steel Res. Int., 2005, vol. 76, pp. 64–70.

    Article  CAS  Google Scholar 

  15. L. Zhang and Y. Wang: JOM, 2012, vol. 64, pp. 1063–74.

    Article  CAS  Google Scholar 

  16. W. Chen, Y. Ren, and L. Zhang: JOM, 2018, vol. 70, pp. 2968–79.

    Article  ADS  CAS  Google Scholar 

  17. Q. Ren, Y. Zhang, Y. Ren, L. Zhang, J. Wang, and Y. Wang: J. Mater. Sci. Technol., 2020, vol. 61, pp. 147–58.

    Article  Google Scholar 

  18. Q. Ren, Y. Zhang, L. Zhang, J. Wang, Y. Chu, Y. Wang, and Y. Ren: J. Mater. Res. Technol., 2020, vol. 9, pp. 5648–65.

    Article  CAS  Google Scholar 

  19. J. Wang, L. Zhang, Y. Zhang, G. Cheng, Y. Wang, Q. Ren, and W. Yang: ISIJ Int., 2021, vol. 61, pp. 824–33.

    Article  CAS  Google Scholar 

  20. Y. Zhang, L. Zhang, J. Wang, K. Niu, and Y. Wang: Iron Steel (In Chinese), 2021, vol. 56, pp. 74–82.

    CAS  Google Scholar 

  21. T. Matsumiya, H. Kajioka, S. Mizoguchi, Y. Ueshima, and H. Esaka: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 873–82.

    Article  Google Scholar 

  22. T. Matsumiya: Mater. Trans. JIM, 1992, vol. 33, pp. 783–94.

    Article  CAS  Google Scholar 

  23. L. Zhang: Steel Res. Int., 2006, vol. 77, pp. 158–69.

    Article  CAS  Google Scholar 

  24. K. Kirihara: Kobelco Technol. Rev., 2011, vol. 61, pp. 62–65.

    Google Scholar 

  25. X. Zhuo, L. Wang, X. Wang, and W. Wang: J. Iron. Steel Res. Int., 2005, vol. 17, pp. 26–29.

    CAS  Google Scholar 

  26. K. Wang, M. Jiang, X. Wang, Y. Wang, H. Zhao, and Z. Cao: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2198–207.

    Article  ADS  Google Scholar 

  27. Y. Zhang, L. Zhang, J. Wang, Y. Ren, Q. Ren, and W. Yang: Chin. J. Eng., 2023, vol. 45, pp. 369–79.

    CAS  Google Scholar 

  28. W. Chen, L. Zhang, Y. Wang, Y. Ren, Q. Ren, and W. Yang: Int. J. Heat Mass Transf. 2022, vol. 190, pp. 122789_1-17.

  29. Y. Wang, L. Zhang, W. Chen, and Y. Ren: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 1796–2805.

    ADS  Google Scholar 

  30. Y. Wang, L. Zhang, W. Yang, and Y. Ren: J. Iron. Steel Res. Int., 2022, vol. 29, pp. 237–46.

    Article  Google Scholar 

  31. Y. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 685–705.

    Article  ADS  CAS  Google Scholar 

  32. H. Chen, M. Long, D. Chen, T. Liu, and H. Duan: Int. J. Heat Mass Transf., 2018, vol. 126, pp. 843–53.

    Article  CAS  Google Scholar 

  33. Y. Ueshima, S. Mizoguchi, T. Matsumiya, and H. Kajioka: Metall. Mater. Trans. B, 1986, vol. 17, pp. 845–59.

    Article  ADS  Google Scholar 

  34. Y.M. Won and B.G. Thomas: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1755–67.

    Article  ADS  CAS  Google Scholar 

  35. I.-H. Jung, S.A. Decterov, and A.D. Pelton: ISIJ Int., 2004, vol. 44, pp. 527–36.

    Article  CAS  Google Scholar 

  36. Introduction to the calculation of phase diagram using FactSage thermodynamic software. http://www.factsage.com.

  37. T. Murao, T. Kajitani, H. Yamamura, K. Anzai, K. Oikawa, and T. Sawada: ISIJ Int., 2014, vol. 54, pp. 359–65.

    Article  CAS  Google Scholar 

  38. F. Mayer, M. Wu, and A. Ludwig: Steel Res. Int., 2010, vol. 81, pp. 660–67.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support from National Key R&D Program (No. 2023YFB3709900), the National Natural Science Foundation of China (Grant Nos. U22A20171 and 52304340), the High Steel Center (HSC) at North China University of Technology and the High Quality Steel Consortium (HQSC) at University of Science and Technology Beijing, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jujin Wang or Lifeng Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, J., Chen, W. et al. Prediction on the Composition Distribution of Oxide Inclusions in a Tire Cord Steel Billet Using an Integrated Model. Metall Mater Trans B 55, 1134–1145 (2024). https://doi.org/10.1007/s11663-024-03030-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-024-03030-4

Navigation