Skip to main content
Log in

Electrochemical Formation of Calcium Hexaboride and Boronizing of Metal Electrodes in CaCl2-Based Molten Salt

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The electrochemical behaviors of boron species on Mo and Ni electrodes in molten NaCl–CaCl2–CaO–B2O3 at 1123 K were investigated to establish a process for CaB6 production using molten salt electrolysis. Electrolysis was performed at four different potentials (− 2.97, − 2.77, − 2.37, and − 2.07 V vs Cl/Cl2) on Mo and Ni plates. Boronized Mo or Ni was observed under all experimental conditions. At a potential of − 2.37 V, the boronized layer was a few micrometers thick for Mo, whereas it was approximately 15 µm for Ni under the same electrolytic conditions. Moreover, CaB6 was formed at − 2.37 V or a more negative potential in the case of Mo, although it was formed at − 2.77 V or a more negative potential in the case of Ni. Boronizing proceeded more rapidly on Ni than on Mo, indicating that boronizing tends to be predominant over the formation of CaB6 in the case of Ni. The results show that Mo is a more suitable electrode material than Ni for CaB6 production. Furthermore, even though the melt contains Ca2+ ions, the metal can be boronized under appropriate conditions by molten salt electrolysis without the formation of CaB6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z. Yahia, S. Turrell, G. Turrell, and J.P. Mercurio: J. Mol. Struct., 1990, vol. 224, pp. 303–12.

    Article  CAS  Google Scholar 

  2. H. Yin, D. Tang, X. Mao, W. Xiao, and D. Wang: J. Mater. Chem. A, 2015, vol. 3, p. 15184.

    Article  CAS  Google Scholar 

  3. K. Giannò, A.V. Sologubenko, H.R. Ott, A.D. Bianchi, and Z. Fisk: J. Phys. Condens. Matter, 2002, vol. 14, pp. 1035–43.

    Article  Google Scholar 

  4. S. Otani: J. Cryst. Growth, 1998, vol. 192, pp. 346–49.

    Article  CAS  Google Scholar 

  5. M. Takeda, M. Terui, N. Takahashi, and N. Ueda: J. Solid State Chem., 2006, vol. 179, pp. 2823–26.

    Article  CAS  Google Scholar 

  6. J.L. Andrieux: Ann. Chim., 1929, vol. 10, p. 423.

    Google Scholar 

  7. K. Uchida: Surf. Technol., 1978, vol. 7(1), pp. 39–44.

    Article  CAS  Google Scholar 

  8. X. Wang and Y. Zhai: J. Appl. Electrochem., 2009, vol. 39, pp. 1797–1802.

    Article  CAS  Google Scholar 

  9. Y. Chernov, E. Filatov, N. Shurov, V. Smolenski, and N. Tkachev: Metall. Mater. Trans. B, 2019, vol. 50, pp. 1745–51.

    Article  CAS  Google Scholar 

  10. S. Angappan, M. Helan, A. Visuvasam, L.J. Berchmans, and V. Ananth: Ionics, 2011, vol. 17, pp. 527–33.

    Article  CAS  Google Scholar 

  11. D. Chukhvantsev, E. Filatov, and N. Shurov: Mater. Sci. Eng. B, 2022, vol. 284, p. 115917.

    Article  CAS  Google Scholar 

  12. W. Weng, M. Wang, X. Gong, Z. Wang, D. Wang, and Z. Guo: J. Electrochem. Soc., 2018, vol. 165, p. E477.

    Article  CAS  Google Scholar 

  13. Y. Katasho, K. Yasuda, and T. Nohira: J. Nucl. Mater., 2018, vol. 503, pp. 290–303.

    Article  CAS  Google Scholar 

  14. X. Chen, Y. Zhang, J. Qu, X. Qu, B. Zhang, Z. Zhao, Y. Zhao, D. Wang, and H. Yin: Sep. Purif. Technol., 2022, vol. 285, p. 120391.

    Article  CAS  Google Scholar 

  15. M. Kulka: Current Trends in Boriding, Springer, Cham, 2019, pp. 48–58.

    Book  Google Scholar 

  16. L. Segers, A. Fontana, and R. Winand: Electrochim. Acta., 1991, vol. 36(1), pp. 41–47.

    Article  CAS  Google Scholar 

  17. G. Kartal, S. Timur, and C. Arslan: J. Electron. Mater., 2005, vol. 34(12), pp. 1538–42.

    Article  CAS  Google Scholar 

  18. V. Sista, O. Kahvecioglu, G. Kartal, Q.Z. Zeng, J.H. Kim, O.L. Eryilmaz, and A. Erdemir: Surf. Coat. Technol., 2013, vol. 215, pp. 452–59.

    Article  CAS  Google Scholar 

  19. O.K. Feridun, V. Sista, O.L. Eryilmaz, and A. Erdemir: Surf. Eng., 2015, vol. 31, pp. 575–80.

    Article  CAS  Google Scholar 

  20. H. Okamoto: J. Phase Equilib. Diffus., 2018, vol. 39(6), pp. 953–65.

    Article  CAS  Google Scholar 

  21. M. Tada and Y. Ito: Denki Kagaku oyobi Kogyo Butsuri Kagaku, 1992, vol. 60, pp. 515–22.

    Article  CAS  Google Scholar 

  22. Y. Gu, et al.: J. Alloys Compd., 2017, vol. 690, pp. 228–38.

    Article  CAS  Google Scholar 

  23. X. Yang, L. Ji, X. Zou, T. Lim, J. Zhao, E.T. Yu, and A.J. Bard: Angew. Chem., 2017, vol. 56, pp. 15078–82.

    Article  CAS  Google Scholar 

  24. G.K. Sireli: Encyclopedia of Iron, Steel, and Their Alloys, Taylor & Francis, New York, 2015, pp. 2284–2300.

    Google Scholar 

  25. K. Koyama, H. Shimotake, and F.C. Mrazek: J. Electrochem. Soc., 1983, vol. 130, pp. 147–51.

    Article  CAS  Google Scholar 

  26. D. Killinger and S. Phongikaroon: J. Electrochem. Soc., 2021, vol. 168, p. 036518.

    Article  Google Scholar 

  27. The Chemical Society of Japan, Kagaku binran kisohen, 6th edition, Maruzen, 2020.

  28. Y. Katasho, K. Yasuda, and T. Nohira: J. Electrochem. Soc., 2017, vol. 164, pp. D478–85.

    Article  CAS  Google Scholar 

  29. Y. Seto and M. Ohtsuka: J. Appl. Cryst., 2022, vol. 55, pp. 397–410.

    Article  CAS  Google Scholar 

  30. Material Property Data, https://www.matweb.com/search/datasheet.aspx?matguid=f2e8eea2aeee449e9ab92f1a0302da12&ckck=1. Accessed 6 March 2023.

  31. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson: APL Mater., 2013, vol. 1, p. 011002.

    Article  Google Scholar 

  32. H. Li, Y. Fu, J. Liang, and Y. Yang: Materials, 2022, vol. 15(21), p. 7646.

  33. Y. Zaikov, V. Batukhtin, N. Shurov, and A. Suzdaltsev: Electrochem Mater. Technol., 2022, vol. 1, pp. 1–21.

    Article  Google Scholar 

  34. A.V. Suzdaltsev, et al.: J. Electrochem. Soc., 2017, vol. 164, pp. H5183–88.

    Article  CAS  Google Scholar 

  35. Y.P. Zaikov, V.P. Batukhtin, N.I. Shurov, L.E. Ivanovskii, and A.V. Suzdaltsev: Metall. Mater. Trans. B, 2014, vol. 45, pp. 961–67.

    Article  CAS  Google Scholar 

  36. Y.P. Zaikov, N.I. Shurov, V.P. Batukhtin, and O.G. Molostov: Metall. Mater. Trans. B, 2014, vol. 45, pp. 968–74.

    Article  CAS  Google Scholar 

  37. A. Mukherjee, R. Kumaresan, and S. Ghosh: J. Electroanal. Chem., 2021, vol. 902, p. 115778.

    Article  CAS  Google Scholar 

  38. Japan new metals Co. Ltd, The physical properties of a compound: Specific Electrical Conductivity <http://www.jnm.co.jp/en/data/electrical_conductivity.html> Accessed 19 Sep 2023.

Download references

Acknowledgments

This study was partially supported by the New Energy and Industrial Technology Development Organization (NEDO) of Japan and JSPS KAKENHI (Grant Number 19K23582).

Conflict of interest

A conflict of interest exists whenever an author has a financial or personal relationship with a third party whose interests could be positively or negatively influenced by the article's content. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumi Katasho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 743 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katasho, Y., Oishi, T. & Haarberg, G.M. Electrochemical Formation of Calcium Hexaboride and Boronizing of Metal Electrodes in CaCl2-Based Molten Salt. Metall Mater Trans B 55, 266–277 (2024). https://doi.org/10.1007/s11663-023-02956-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02956-5

Navigation