Skip to main content
Log in

Numerical Simulation of Process of Electromagnetic Casting and Technology Features

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This paper presents a proposed numerical model of casting process into electromagnetic crystallizer mold and results obtained when applying it to the analysis of the processes of casting aluminum ingots with a diameter of 25 to 30 mm. The numerical model is based on the calculation of the electromagnetic field by means of user-defined function (UDF) in Fluent software combined with the simulation of processes related to free surface using volume of fluid (VOF) method and crystallization on Kozeny-Carman method. The results of solving the search problem on the determination of a set of parameters ensuring the stable formation of an ingot of the required diameter as well as the results of simulation of emergency and special modes are shown. The article also presents application results of the modes identified on the laboratory installation of casting into electromagnetic crystallizer using ElmaCast® technology for the production of ingots from experimental alloys "Nikalin" and "Alcimac".

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Z.N. Getselev: JOM, 1971, vol. 23(10), pp. 38–9. https://doi.org/10.1007/BF03355734.

    Article  Google Scholar 

  2. J. Sakane, B. Li, and J.W. Evans: Metall. Mater. Trans. B, 1988, vol. 19(3), pp. 397–408. https://doi.org/10.1007/BF02657737.

    Article  Google Scholar 

  3. M.V. Pervukhin: Modern Electrotechnologies for the Production of High-Quality Aluminum Alloys, Siberian Federal University, Krasnoyarsk, 2015, p. 115.

    Google Scholar 

  4. M. Khatsayuk, V. Timofeev, and D. Mikhaylov: Appl. Mech. Mater., 2015, vol. 698, pp. 181–7. https://doi.org/10.4028/www.scientific.net/AMM.698.181.

    Article  CAS  Google Scholar 

  5. M. Y. Khatsayuk, M. V. Pervukhin, N. V. Sergeev, V. N. Timofeev, R. M. Khristinich: Russian patent 2477193, 2013

  6. Elmacast. http://elmacast.com. Accessed 20 Aug 2022.

  7. A.V. Minakov, M.V. Pervukhin, D.V. Platonov, and M.Y. Khatsayuk: Comput. Math. Math. Phys., 2015, vol. 12, pp. 2066–79. https://doi.org/10.1134/S096554251512009X.

    Article  Google Scholar 

  8. N.A. Belov, N.O. Korotkova, T.K. Akopyan, and V.N. Timofeev: JOM, 2020, vol. 72(4), pp. 1561–70. https://doi.org/10.1007/s11837-019-03875-0.

    Article  CAS  Google Scholar 

  9. S.B. Sidelnikov, D.S. Voroshilov, M.M. Motkov, V.N. Timofeev, I.L. Konstantinov, N.N. Dovzhenko, E.S. Lopatina, V.M. Bespalov, R.E. Sokolov, Y.N. Mansurov, and M.V. Voroshilova: Int. J. Adv. Manuf. Technol., 2021, https://doi.org/10.1007/s00170-021-07054-x.

    Article  Google Scholar 

  10. N.O. Korotkova, S.O. Cherkasov, V.N. Timofeev, and A.A. Aksenov: Phys. Met. Metallogr., 2021, https://doi.org/10.1134/S0031918X21060065.

    Article  Google Scholar 

  11. N.A. Belov, T.K. Akopyan, N.O. Korotkova, P.K. Shurkin, V.N. Timofeev, O.A. Raznitsyn, and T.A. Sviridova: J. Alloys Compd., 2022, https://doi.org/10.1016/j.jallcom.2021.161948.

    Article  Google Scholar 

  12. S. Spitans, E. Baake, B. Nacke, and A. Jakovics: Metall. Mater. Trans. B, 2015, vol. 47(1), pp. 522–36. https://doi.org/10.1007/s11663-015-0515-7.

    Article  CAS  Google Scholar 

  13. V.B. Demidovich, M.Y. Khatsayuk, I.I. Rastvorova, V.N. Timofeev, and A.A. Maksimov: Magnetohydrodynamics, 2015, vol. 51(4), pp. 785–94. https://doi.org/10.22364/mhd.51.4.11.

    Article  Google Scholar 

  14. J. Vencels, P. Raback, and V. Gega: SoftwareX, 2019, vol. 9, pp. 68–72. https://doi.org/10.1016/j.softx.2019.01.00.

    Article  Google Scholar 

  15. M. Klevs, M. Birjukov, P. Zvejnieks, and A. Jakovics: Phys. Fluids, 2021, vol. 33(8), p. 083316.

    Article  CAS  Google Scholar 

  16. X. Huang, B. Li, Z. Liu, M. Li, and F. Qi: Int. J. Heat Mass Transf., 2020, https://doi.org/10.1016/j.ijheatmasstransfer.2020.120473.

    Article  Google Scholar 

  17. V. Bojarevics, K. Pericleous, and M. Cross: Metall. Mater. Trans. B, 2000, vol. 31(1), pp. 179–89. https://doi.org/10.1007/s11663-000-0143-7.

    Article  Google Scholar 

  18. V.N. Timofeev and M.Y. Khatsayuk: Magnetohydrodynamics, 2016, vol. 52(4), pp. 495–506. https://doi.org/10.22364/mhd.52.4.6.

    Article  Google Scholar 

  19. A. Sabau, K. Kuwana, S. Viswanathan, K. Saito, L. Davis: Light Metalls, 2004, pp. 667–72.

  20. V. Bojarevics, Y. Freibergs, E.I. Shilova, and E.V. Shcherbinin: Electrically Induced Vortical Flows, 1st ed. Kluwer Academic Publishers, Dordrecht, 1989, p. 400. https://doi.org/10.1007/978-94-009-0999-1_21.

    Book  Google Scholar 

  21. G.A. Ostroumov: Free Convection Under Internal Problem Conditions, Gostekhizdat, Moscow, 1952, p. 286.

    Google Scholar 

  22. F.R. Menter: AIAA J., 1994, vol. 32(8), pp. 1598–605. https://doi.org/10.2514/3.12149.

    Article  Google Scholar 

  23. C.W. Hirt and B.D. Nicholos: J. Comput. Phys., 1981, vol. 39(1), pp. 201–26. https://doi.org/10.1016/0021-9991(81)90145-5.

    Article  Google Scholar 

  24. V.R. Voller, A.D. Brent, and C. Prakash: Int. J. Heat Mass Transf., 1989, vol. 32(9), pp. 1719–31. https://doi.org/10.1016/0017-9310(89)90054-9.

    Article  CAS  Google Scholar 

  25. V.R. Voller and C. Prakash: Int. J. Heat Mass Transf., 1987, vol. 30(8), pp. 1709–20. https://doi.org/10.1016/0017-9310(87)90317-6.

    Article  CAS  Google Scholar 

  26. J.E. Hatch: Aluminum: Properties and Physical Metallurgy, 1st ed. ASM International, Novelty, 1984, p. 424.

    Google Scholar 

  27. M. Kirpo: Ph.D. Thesis, University of Latvia, 2008, p. 219.

Download references

Acknowledgments

The study was supported by a grant from the Russian Science Foundation (project No. 22-19-00128 “Evolution of the structure of high-strength aluminum alloys of the Al-Zn-Mg (Ni, Fe, Ca) system obtained by technology of electromagnetic casting”, https://rscf.ru/project/22-19-00128/).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Vinter.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 22825 KB)

Appendix

Appendix

Setting of Two-Phase Zone Constant in the Crystallization Model

For the correct choice of the crystallization model parameters the nonequilibrium crystallization curve for the Nikalin and Alcimac alloys was calculated. The curves were obtained based on the composition of the alloys according to the Scheil-Gulliver model.

Figure A1 illustrates the calculated curves, from which it is clear that the total fraction of solid phases has a non-linear character of the temperature dependence. As can be seen, the alloys under study are characterized by a wide crystallization temperature range. However, in the most part of the crystallization range 480 °C…610 °C, the total proportion of solid phases is > 0.5, that is, the melt contains predominantly solid phases. Obviously, the viscosity in this temperature interval increases significantly, which excludes the occurrence of macroscale intense melt flows.

The numerical calculation assumes a linear dependence of the solid phase fraction on temperature in the interval of \({T}_{liq}\dots {T}_{sol}\), and the presence of other phase components in the alloy is not taken into account. In this case, the intensity of macroscale hydrodynamic flows in the crystallization zone depends on the coefficient \({A}_{\beta }\). Consequently, for the problem setting, parameters \({T}_{liq},{T}_{sol}\) and coefficient \({A}_{\beta }\) should be set so as to exclude the occurrence of macroscale melt flows in the area with the temperature below 660 C (solidus point of pure aluminum). This setting corresponds to the selection \({A}_{\beta }\ge {10}^{6}\). This assumption is valid only for melts with a convex curve, similar to the one shown above.

Fig. A1
figure 15

Calculated non-equilibrium crystallization curves for “Nikalin” (a) and “Alcimac” (b) alloys

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatsayuk, M., Vinter, E., Timofeev, V. et al. Numerical Simulation of Process of Electromagnetic Casting and Technology Features. Metall Mater Trans B 54, 1768–1783 (2023). https://doi.org/10.1007/s11663-023-02791-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02791-8

Navigation