Skip to main content
Log in

Simultaneous Extraction of Gold and Vanadium From Vanadium and Carbon-Rich Refractory Gold Minerals by Chlorination Roasting

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To realize the efficient comprehensive utilization of refractory gold ore resources and environmental and economic gold extraction methods, this study investigated the optimal chlorine source for the sustained recovery of gold and vanadium from carbonaceous refractory gold ore by chlorination heat treatment. During the chlorination roasting process, the results indicated that CaCl2 has a greater chlorine supply capacity, and the reaction of refractory carbonaceous gold ore with CaCl2 was more intense than other chlorine sources. In addition, the effect of significant parameters (such as heat treatment temperature, heat treatment time, and CaCl2 additions) on gold and vanadium recovery ratios was carefully investigated. Under ideal conditions (i.e., CaCl2 concentration of 10 pct, heat treatment temperature of 1100 °C, heat treatment time of 4 hours, and air velocity of 1 L/min), 89.91 and 83.26 pct of gold and vanadium were recovered, respectively. In comparison, the main chemical mechanisms and phase transitions during the roasting process were studied by some analytical methods (such as scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and thermodynamic data). All alkaline chlorine sources were shown to destroy the structure of the minerals. CaCl2 was the compound with the more potent effect. Pyrite could enhance the chlorination of gold below 700 °C. In contrast, vanadium oxide could promote chlorination of gold above 700 °C. In addition, the leaching residue is primarily made of CaVO3, which can be used as a raw material for vanadium smelting. However, silicon dioxide and iron oxide will react at temperatures above 1100 °C, forming the “silicon oxygen” inclusion that hampered vanadium extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Gavrilescu: Bioresour. Technol., 2022, vol. 344, p. 126208.

    Article  CAS  Google Scholar 

  2. Z.-H. Wang, S.-L. Zheng, S.-N. Wang, B. Liu, D.-W. Wang, H. Du, and Y. Zhang: Trans. Nonferr. Met. Soc. China, 2014, vol. 24(5), pp. 1273–88.

    Article  CAS  Google Scholar 

  3. Y. Zhao, W. Wang, Y. Zhang, S. Song, and S. Bao: Adv. Powder Technol., 2017, vol. 28(3), pp. 1103–07.

    Article  CAS  Google Scholar 

  4. X. Hu, Y. Yue, and X. Peng: J. Environ. Sci., 2018, vol. 64, pp. 298–305.

    Article  CAS  Google Scholar 

  5. S.L. Chryssoulis, J. McMullen, Elsevier, 2016, pp. 57–93.

  6. O. Celep and V. Serbest: Trans. Nonferr. Met. Soc. China, 2015, vol. 25(4), pp. 1286–97.

    Article  CAS  Google Scholar 

  7. K.T. Konadu, D.M. Mendoza, R.J. Huddy, S.T.L. Harrison, T. Kaneta, and K. Sasaki: Hydrometallurgy, 2020, vol. 196, p. 105434.

    Article  CAS  Google Scholar 

  8. R.K. Amankwah and G. Ofori-Sarpong: Miner. Eng., 2020, vol. 151, p. 106312.

    Article  CAS  Google Scholar 

  9. F. Burns, D. Seaman, Y. Peng, and D. Bradshaw: Miner. Eng., 2014, vol. 66–68, pp. 215–20.

    Article  Google Scholar 

  10. P. Cao, S.-H. Zhang, Y.-J. Zheng, H.-B. He, S.-Z. Lai, X.-J. Wang, and B. Tan: Trans. Nonferr. Met. Soc. China, 2020, vol. 30(7), pp. 1964–79.

    Article  CAS  Google Scholar 

  11. D. Feng and J.S.J. Van Deventer: Miner. Eng., 2001, vol. 14(11), pp. 1387–1402.

    Article  CAS  Google Scholar 

  12. O. Sitando, X. Dai, G. Senanayake, A.N. Nikoloski, and P. Breuer: Hydrometallurgy, 2020, vol. 192, p. 105232.

    Article  CAS  Google Scholar 

  13. A. Seitkan and S.A.T. Redfern: Miner. Eng., 2016, vol. 98, pp. 286–302.

    Article  CAS  Google Scholar 

  14. C.R. Adams, C.P. Porter, T.J. Robshaw, J.P. Bezzina, V.R. Shields, A. Hides, R. Bruce, and M.D. Ogden: J. Ind. Eng. Chem., 2020, vol. 92, pp. 120–30.

    Article  CAS  Google Scholar 

  15. B. Nanthakumar, C.A. Pickles, and S. Kelebek: Miner. Eng., 2007, vol. 20(11), pp. 1109–19.

    Article  CAS  Google Scholar 

  16. Q. Li, H. Shen, R. Xu, Y. Zhang, Y. Yang, B. Xu, T. Jiang, and H. Yin: J. Clean. Prod., 2020, vol. 261, p. 121122.

    Article  CAS  Google Scholar 

  17. Z. Dong, T. Jiang, B. Xu, B. Zhang, G. Liu, Q. Li, and Y. Yang: Sep. Purif. Technol., 2021, vol. 272, p. 118929.

    Article  CAS  Google Scholar 

  18. L. Yang, J. Chen, Y. Nie, C. Shi, and Q. Wang: J. Environ. Chem. Eng., 2021, vol. 9(4), p. 105273.

    Article  CAS  Google Scholar 

  19. F. Xie, J.-N. Chen, J. Wang, and W. Wang: Trans. Nonferr. Met. Soc. China, 2021, vol. 31(11), pp. 3506–29.

    Article  CAS  Google Scholar 

  20. X. Sun, R. Liu, Q. Liu, Q. Fei, G. Feng, H. Shan, and Y. Huan: Sens. Actuators B, 2018, vol. 260, pp. 998–1003.

    Article  CAS  Google Scholar 

  21. M. Soleymani, F. Sadri, and A. Ghahreman: Hydrometallurgy, 2021, vol. 205, p. 105744.

    Article  CAS  Google Scholar 

  22. Y. Zheng, Z. Li, X. Wang, X. Gao, and C. Gao: Electrochim. Acta, 2015, vol. 169, pp. 150–58.

    Article  CAS  Google Scholar 

  23. H.-Y. Yang, Q. Liu, X.-L. Song, and J.-K. Dong: Trans. Nonferr. Met. Soc. China, 2013, vol. 23(11), pp. 3405–11.

    Article  CAS  Google Scholar 

  24. J. Ge, Y. Xiao, J. Kuang, and X. Liu: Surf. Interfaces, 2022, vol. 29, p. 101744.

    Article  CAS  Google Scholar 

  25. S.-H. Geng, G.-S. Li, Y. Zhao, H.-W. Cheng, Y. Lu, X.-G. Lu, and Q. Xu: Trans. Nonferr. Met. Soc. China, 2019, vol. 29(10), pp. 2202–12.

    Article  CAS  Google Scholar 

  26. F. Cui, W. Mu, S. Wang, H. Xin, Q. Xu, Y. Zhai, and S. Luo: Miner. Eng., 2018, vol. 123, pp. 104–16.

    Article  CAS  Google Scholar 

  27. B. Niu, Z. Chen, and Z. Xu: J. Clean. Prod., 2020, vol. 252, p. 117206.

    Article  CAS  Google Scholar 

  28. T. Kuzuya, S. Hirai, and V.V. Sokolov: Sep. Purif. Technol., 2013, vol. 118, pp. 823–27.

    Article  CAS  Google Scholar 

  29. D. Zhang, Y. Liu, Q. Hu, X. Ke, S. Yuan, S. Liu, X. Ji, and J. Hu: J. Clean. Prod., 2020, vol. 252, p. 119763.

    Article  CAS  Google Scholar 

  30. M.Y. Ozen and E.M. Derun: Constr. Build. Mater., 2019, vol. 202, pp. 396–405.

    Article  Google Scholar 

  31. S. Jeon and D.-J. Kim: J. Ind. Eng. Chem., 2018, vol. 58, pp. 216–21.

    Article  CAS  Google Scholar 

  32. H.-J. Wang, Y.-L. Feng, H.-R. Li, and J.-X. Kang: Trans. Nonferr. Met. Soc. China, 2020, vol. 30(4), pp. 1111–23.

    Article  CAS  Google Scholar 

  33. W.-W. Wang and Z.-Y. Li: Miner. Eng., 2020, vol. 155, p. 106453.

    Article  CAS  Google Scholar 

  34. X. Li, C. Wei, J. Wu, M. Li, Z. Deng, C. Li, and H. Xu: Sep. Purif. Technol., 2012, vol. 86, pp. 64–69.

    Article  CAS  Google Scholar 

  35. R.B. Wanty and M.B. Goldhaber: Geochim. Cosmochim. Acta, 1992, vol. 56(4), pp. 1471–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by China Ocean Mineral Resource R&D Association under Grant JS-KTHT-2019-01 and No. DY135-B2-15, Major science and technology program for water pollution control and treatment under Grant No. 2015ZX07205-003, the National Natural Science Foundation of China under Grant Nos. 21176242 and 21176026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunliang Liu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Feng, Y., Li, H. et al. Simultaneous Extraction of Gold and Vanadium From Vanadium and Carbon-Rich Refractory Gold Minerals by Chlorination Roasting. Metall Mater Trans B 53, 3955–3966 (2022). https://doi.org/10.1007/s11663-022-02656-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02656-6

Navigation