Skip to main content
Log in

Effects of Adding Calcined Dolomite and Mill Scale to Sinter Mix on the Formation of NO and SO2 in Iron Ore Sintering Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

NO and SO2 are representative harmful gases generated in steel works, and iron ore sintering process accounts for more than 50 pct of total generation. The current study investigated the effects of adding CaO and FeO, which are the components contained in raw materials to sinter mix on the formation of NO and SO2. The addition of CaO to sinter mix promoted the formation of NO due to the catalytic effect of CaO. It also increased the conversion ratio of sulfur to SO2 by forming CaSO4 which then released SO2 as of 1200 °C. The addition of 5 wt pct of FeO significantly reduced the formation of NO and SO2, which could be believed that FeO reduced NO and SO2 by converting them to N2 and FeS, respectively. As the sources of CaO and FeO, calcined dolomite and mill scale with high potential for use in the steel industry were added to sinter mix to clarify their effects on the formation of NO and SO2. The addition of calcined dolomite increased the formation of NO more significantly due to the pores created by calcination and by the catalytic effects of CaO and MgO contained in calcined dolomite. The MgO in calcined dolomite also reacted with SO2 to form MgSO4 which was then thermally decomposed to release SO2 from 1000 °C. The added mill scale increased the formation of NO and SO2, which could be believed that the catalytic effect of Fe2O3 and Fe3O4 in mill scale on the formation of NO and SO2 might be more significant than the inhibiting effect of FeO on their formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Fernandez-Gonzalez, I. Ruiz-Bustinza, J. Mochon, C. Gonzalez-Gasca, and L.F. Verdeja: Miner. Process. Extr. Metall. Rev., 2017, vol. 38, pp. 254–64.

    Article  CAS  Google Scholar 

  2. M.S. Lee and S.C. Shim: ISIJ Int., 2004, vol. 44(3), pp. 470–75.

    Article  CAS  Google Scholar 

  3. G. Li, C. Liu, M. Rao, Z. Fan, Z. You, Y. Zhang, and T. Jiang: ISIJ Int., 2014, vol. 54(1), pp. 37–42.

    Article  CAS  Google Scholar 

  4. H. Yu, C. Zhang, and H. Wang: ISIJ Int., 2015, vol. 55(9), pp. 1876–81.

    Article  CAS  Google Scholar 

  5. Y. Chen, Z. Guo, Z. Wang, and G. Feng: Int. J. Miner. Metall. Mater., 2009, vol. 16(2), pp. 143–48.

    Article  Google Scholar 

  6. K. Katayama and S. Kasama: ISIJ Int., 2016, vol. 56(9), pp. 1563–69.

    Article  CAS  Google Scholar 

  7. X. Gou, Y. Liu, S. Liu, Y. Cao, G. Li, and Q. Zhang: Fuel, 2020, vol. 270(117484), pp. 1–12.

    Google Scholar 

  8. H. Zhou, P. Ma, M. Zhou, Z. Lai, and M. Cheng: J. Energy Inst., 2019, vol. 92(5), pp. 1476–86.

    Article  CAS  Google Scholar 

  9. J.M. Qie, C.X. Zhang, F.Q. Shangguan, X.P. Li, and J.C. Zhou: Trans. Indian Inst. Met., 2020, vol. 73, pp. 35–45.

    Article  CAS  Google Scholar 

  10. Z. Ouyang, J. Zhu, Q. Lu, Y. Yao, and J. Liu: Fuel, 2014, vol. 120, pp. 116–21.

    Article  CAS  Google Scholar 

  11. L. Tomas da Rocha, H. Kim, C. Lee, and S.M. Jung: Metall. Mater. Trans. B, 2020, vol. 51, pp. 2068–78.

    Article  CAS  Google Scholar 

  12. L.N. Wu, Z.Y. Tian, W. Qin, X.Y. Hu, and C.Q. Dong: Proc. Combust. Inst., 2020, vol. 38(4), pp. 5355–62.

    Article  Google Scholar 

  13. G.L. Wu, R.T. Guo, Y.Z. Liu, C.P. Duan, Y.F. Miao, J.W. Gu, and W.G. Pan: Chem. Pap., 2021, vol. 74, pp. 2495–501.

    Article  Google Scholar 

  14. R.H. Borgwardt and K.R. Bruce: AIChE J., 1986, vol. 32(2), pp. 239–46.

    Article  CAS  Google Scholar 

  15. G.A. Simons, A.R. Garman, and A.A. Boni: AIChE J., 1987, vol. 33(2), pp. 211–17.

    Article  CAS  Google Scholar 

  16. M.J. Munoz-Guillena, A. Linares-Solano, and C. Salinas-Martinez de Lecea: Appl. Surf. Sci., 1994, vol. 81, pp. 409–15.

    Article  CAS  Google Scholar 

  17. M.J. Munoz-Guillena, A. Linares-Solano, and C. Salinas-Martinez de Lecea: Appl. Surf. Sci., 1994, vol. 81, pp. 417–25.

    Article  CAS  Google Scholar 

  18. K. Zhang, S. Yang, S. Liu, J. Shangguan, W. Du, Z. Wang, and Z. Chang: ACS Omega., 2020, vol. 5, pp. 3047–54.

    Article  CAS  Google Scholar 

  19. E. Kasai, T. Sugiyama, and Y. Omori: Tetsu-to-Hagane, 1994, vol. 80(4), pp. 282–87.

    Article  CAS  Google Scholar 

  20. E. Kasai and F. Saito: Kagaku Kogaku Ronbunshu, 1994, vol. 20(6), pp. 857–63.

    Article  CAS  Google Scholar 

  21. S. Wu, T. Sugiyama, K. Morioka, E. Kasai, and Y. Omori: Tetsu-to-Hagane., 1994, vol. 8(4), pp. 276–81.

    Article  Google Scholar 

  22. B.V. Reddy and S. N. Khanna: Phys. Rev. Lett., 2004, vol. 93(6), pp. 068301-1-4.

  23. Z. G. Que, X. B. Ai and S.L. Wu: Int. J. Miner. Metall. Mater., 2020, pp. 1–23.

  24. W. Mayangsari and A. B. Prasetyo: IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 202 (012016), pp. 1–10.

  25. S. Cho, L. Tomas da Rocha, B.J. Chung, and S.M. Jung: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 84–95.

    Article  Google Scholar 

  26. T. Umadevi, P. Karthik, P.C. Mahapatra, M. Prabhu, and M. Ranjan: Ironmak. Steelmak., 2012, vol. 39(3), pp. 180–89.

    Article  CAS  Google Scholar 

  27. H. Qichen, W. Chunliang, S. Jianghuan, W. Na, and H. Binsheng: Int. J. Miner. Process. Extract. Metall., 2019, vol. 4(1), pp. 1–6.

    Google Scholar 

  28. L. Tomas da Rocha, B.J. Chung, and S.M. Jung: J. Sustain. Metall., 2021, vol. 7, pp. 377–90.

    Article  Google Scholar 

  29. D.G. Gavin and M.A. Dorrington: Fuel., 1993, vol. 72, pp. 381–88.

    Article  CAS  Google Scholar 

  30. Z. Zhao, W. Li, J. Qiu, X. Wang, and B. Li: Fuel., 2006, vol. 85, pp. 601–06.

    Article  CAS  Google Scholar 

  31. Z. Zhao, W. Li, J. Qiu, and B. Li: Fuel., 2003, vol. 82, pp. 1839–44.

    Article  CAS  Google Scholar 

  32. J. Wu, B. Wang, H.H. Lou, F. Yang, and F. Cheng: Asia-Pac. J. Chem. Eng., 2016, vol. 11, pp. 735–42.

    Article  CAS  Google Scholar 

  33. W. Lv, X. Fan, X. Min, M. Gan, X. Chen, and Z. Ji: ISIJ Int., 2018, vol. 58(2), pp. 236–43.

    Article  CAS  Google Scholar 

  34. R. Marouf, K.M. Khelifa, J. Schott, and A. Khelifa: Microporous Mesoporous Mater., 2009, vol. 122, pp. 99–104.

    Article  CAS  Google Scholar 

  35. C. Chen, F. Chen, Z. Chen, Q. Chan, S. Kook, and G. Yeoh: J. Energy Inst., 2016, vol. 90(5), pp. 806–12.

    Article  Google Scholar 

  36. J. Hammerschmidt and M. Wrobel: Sulphur and Sulphuric Acid Conference, The Southern African Institute of Mining and Metallurgy, 2009, vol. 87, pp. 87–100.

  37. Y. Tardy and L. Gartner: Contrib. Mineral. Petrol., 1977, vol. 63, pp. 89–102.

    Article  CAS  Google Scholar 

  38. M.N. Scheidema and P. Taskinen: Ind. Eng. Chem. Res., 2011, vol. 50, pp. 9550–56.

    Article  CAS  Google Scholar 

  39. C. W. Bale, P. Chartrand, S. A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoun, J. Melancon, A. D. Pelton and S. Petersen: Calphad, 2002, vol. 26 (2), pp. 189–228.

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Mo Jung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 27, 2021; accepted March 15, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S., Tomas da Rocha, L., Chung, BJ. et al. Effects of Adding Calcined Dolomite and Mill Scale to Sinter Mix on the Formation of NO and SO2 in Iron Ore Sintering Process. Metall Mater Trans B 53, 1936–1947 (2022). https://doi.org/10.1007/s11663-022-02504-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02504-7

Navigation