Skip to main content
Log in

Effect of Modulated Helical Magnetic Field on Solidifying Segregation of Sn–3.5 Wt Pct Pb Alloy in a Directional Solidification

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this paper, a modulated permanent helical magnetic field is imposed to improve segregation during directional solidification in a binary Sn–3.5 wt pct Pb alloy. The magnetic force created by this magnetic field significantly interferes with heat, mass and momentum transfer of molten metal during solidification. Our experimental results show that this magnetic field, with an appropriate modulation frequency, can not only promote columnar-to-equiaxed transition (CET) but also significantly reduce solute segregation otherwise caused by conventional helical magnetic fields. Our analysis demonstrates the advantages of this approach over natural convection and conventional electromagnetically forced convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Ghosh: Sadhana., 2001, vol. 26, pp. 5–24.

    Article  CAS  Google Scholar 

  2. G.M. Poole, M. Heyen, L. Nastac, and N. El-Kaddah: Metall. Mater. Trans. B., 2014, vol. 45B, pp. 1834–41.

    Article  Google Scholar 

  3. C.M. Flemings: ISIJ Int., 2000, vol. 40, pp. 838–41.

    Article  Google Scholar 

  4. C. Beckermann: Modeling of Macrosegregation: Past, Present and Future, Boston, 2000, pp. 297–310.

  5. B.Q. Li: JOM-e., 1998, vol. 50, pp. 1–10.

    Google Scholar 

  6. J. Campbell and O. Freng: Castings, 2nd ed. Elsevier, Amsterdam, 2003.

    Google Scholar 

  7. S. Kobayashi: J. Cryst. Growth., 1988, vol. 88, pp. 87–96.

    Article  CAS  Google Scholar 

  8. G. Quillet, A. Ciobanas, P. Lehmann, and Y. Fautrelle: Int. J. Heat Mass Transf., 2007, vol. 50, pp. 654–66.

    Article  CAS  Google Scholar 

  9. L. Hachani, B. Saadi, X.D. Wang, A. Nouri, K. Zaidat, A. Belgacem-Bouzida, L. Ayouni-Derouiche, G. Raimondi, and Y. Fautrelle: Int. J. Heat Mass Transf., 2012, vol. 55, pp. 1986–96.

    Article  CAS  Google Scholar 

  10. O. Bertrand, B. Binet, H. Combeau, S. Couturier, Y. Delannoy, D. Gobin, M. Lacroix, P. Le Quere, M. Medale, J. Mencinger, H. Sadat, and G. Vieira: Int. J. Therm. Sci., 1999, vol. 38, pp. 5–26.

    Article  CAS  Google Scholar 

  11. S. Binder, P.K. Galenko, and D.M. Herlach: J. Appl. Phys., 2014, vol. 115, pp. 1022–110.

    Article  Google Scholar 

  12. X.D. Wang and Y. Fautrelle: R. Moreau.: Int. J. Energy Environ. Eng., 2015, vol. 6, pp. 367–73.

    CAS  Google Scholar 

  13. P. Wu, B. Wang, and X.D. Wang: Mater. China., 2017, vol. 12, pp. 912–20.

    Google Scholar 

  14. V. Metan and K. Eigenfeld: Eur. Phys. J. Spec. Top., 2013, vol. 220, pp. 139–50.

    Article  CAS  Google Scholar 

  15. X.D. Wang, P. Petitpas, C. Garnier, J.P. Paulin, and Y. Fautrelle: C R. acad. mech., 2007, vol. 5, pp. 1–6.

    Google Scholar 

  16. L. Hachani, K. Zaidat, and Y. Fautrelle: Int. J. Heat Mass Transf., 2015, vol. 85, pp. 438–54.

    Article  CAS  Google Scholar 

  17. X. Li, Y. Fautrelle, A. Gagnoud, D. Du, and J. Wang: Z. Ren. Acta Mater., 2014, vol. 64, pp. 367–81.

    Article  CAS  Google Scholar 

  18. C. Vives: Metall. Trans. B., 1993, vol. 24, pp. 493–510.

    Article  Google Scholar 

  19. P.A. Davidson: Annu. Rev. Fluid Mech., 1999, vol. 31, pp. 273–300.

    Article  Google Scholar 

  20. A.A. Tzavaras and H.D. Brody: J. Met., 1984, vol. 36, pp. 31–7.

    CAS  Google Scholar 

  21. D. Perrier, Y. Fautrelle, and J. Etay: Metall. Mater. Trans. B., 2003, vol. 34B, pp. 669–78.

    Article  CAS  Google Scholar 

  22. S. Hu, A. Gagnoud, Y. Fautrelle, R. Moreau, and X. Li: Sci. Rep., 2018, vol. 8, p. 7945.

    Article  Google Scholar 

  23. C. Li, S. Hu, Z. Ren, Y. Fautrelle, and X. Li: J. Mater. Sci. Technol., 2018, vol. 34, pp. 2431–8.

    Article  Google Scholar 

  24. S. Eckert, P.A. Nikrityuk, D. Raebiger, K. Eckert, and G. Gerbeth: Metall. Mater. Trans. B., 2007, vol. 38B, pp. 977–88.

    Article  CAS  Google Scholar 

  25. K. Zhang, Yi. Li, and Y. Yang: Acta Metall. Sin., 2020, vol. 33, pp. 1442–54.

    Article  CAS  Google Scholar 

  26. B. Willers, S. Eckert, P.A. Nikrityuk, D. Raebiger, J. Dong, K. Eckert, and G. Gerbeth: Metall. Mater. Trans. B., 2008, vol. 39B, pp. 304–16.

    Article  CAS  Google Scholar 

  27. X.D. Wang, Y. Fautrelle, J. Etay, and R. Moreau: Metall. Mater. Trans. B., 2009, vol. 40B, pp. 82–90.

    Article  CAS  Google Scholar 

  28. X.D. Wang, R. Moreau, J. Etay, and Y. Fautrelle: Metall. Mater. Trans. B., 2009, vol. 40B, pp. 104–13.

    Article  CAS  Google Scholar 

  29. T. Wu and L. Chao: J. Chin. Inst. Eng., 2020, vol. 43, pp. 397–403.

    Article  CAS  Google Scholar 

  30. X.D. Wang, A. Ciobanas, F. Baltaretu, A.M. Bianchi, and Y. Fautrelle: Mater. Sci. Forum., 2006, vol. 508, pp. 163–8.

    Article  CAS  Google Scholar 

  31. A. Noeppel, A. Ciobanas, X.D. Wang, K. Zaidat, N. Mangelinck, R. Moreau, A. Weiss, G. Zimmermann, and Y. Fautrelle: Metall. Mater. Trans. B., 2010, vol. 41B, pp. 193–208.

    Article  CAS  Google Scholar 

  32. J. Stiller and K. Koal: J. Turbul., 2009, vol. 10, pp. 1–16.

    Article  Google Scholar 

  33. Q. Zhao, C. Fang, X. Hou, Y. Han, N. Zhang, and X. Zhang: Spec. Cast. Nonferr. Alloys., 2011, vol. 31, pp. 495–500.

    CAS  Google Scholar 

  34. A. Cramer, J. Pal, and G. Gerbeth: Phys. Fluids., 2007, vol. 19, pp. 406–21.

    Article  Google Scholar 

  35. I. Grants, C. Zhang, S. Eckert, and G. Gerbeth: J. Fluid Mech., 2008, vol. 616, pp. 135–52.

    Article  Google Scholar 

  36. J.M.D. Coey: J. Magn. Magn. Mater., 2002, vol. 248, pp. 441–56.

    Article  CAS  Google Scholar 

  37. I. Bucenieks, K. Kravalis, and R. Krishbergs: Magnetohydrodynamics., 2007, vol. 47, pp. 97–104.

    Google Scholar 

  38. Q. Yao, Z. Luo, Y. Li, F.Y. Yan, and R. Duan: Mater. Des., 2014, vol. 63, pp. 200–7.

    Article  CAS  Google Scholar 

  39. J. Zeng, W. Chen, Y. Yang, and A. Mclean: Metall. Mater. Trans. B., 2017, vol. 48B, pp. 3083–100.

    Article  Google Scholar 

  40. O. Ben-David, A. Levy, B. Mikhailovich, and A. Azulay: Int. J. Heat Mass Transf., 2015, vol. 81, pp. 373–82.

    Article  Google Scholar 

  41. A. Bojarevics, T. Beinerts, M. Sarma, and Y. Gelfgat: J. Manuf. Sci. Prod., 2015, vol. 15, pp. 35–9.

    CAS  Google Scholar 

  42. J. Zeng, W. Chen, W. Yan, Y. Yang, and A. McLean: Mater. Des., 2016, vol. 108, pp. 364–73.

    Article  CAS  Google Scholar 

  43. T. Li, X. Lin, and W. Huang: Acta Mater., 2006, vol. 54, pp. 4815–24.

    Article  CAS  Google Scholar 

  44. X. Zhang, Q. Zhao, J. Guo, Q. Xing, L. Deng, X. Hou, and C. Fang: Acta Metall. Sin., 2013, vol. 26, pp. 345–51.

    Article  CAS  Google Scholar 

  45. B. Wang, X.D. Wang, J. Etay, X.Z. Na, X.D. Zhang, and Y. Fautrelle: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 1369–77.

    Article  Google Scholar 

  46. B. Wang, X.D. Wang, Y. Fautrelle, J. Etay, X.Z. Na, and F. Baltaretu: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 3476–88.

    Article  Google Scholar 

  47. K. Kishitake, S. Nejihashi, H. Ioka, and T. Okamoto: J. Cryst. Growth 35., 1976, vol. 98, p. 104.

    Google Scholar 

  48. X. Wang, Y. Fautrelle, J. Etay, and R. Moreau: Metall. Mater. Trans. B., 2008, vol. 40B, pp. 82–90.

    Google Scholar 

  49. X.D. Wang, R. Moreau, J. Etay, and Y. Fautrelle: Metall. Mater. Trans. B., 2009, vol. 40B, p. 82.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Industrial Strong Foundation Project (Grant No. DTCC28EE190929), the “Double First-Class” Construction Fund (Grant No. 111800XX62), and the Mechanical Engineering Discipline Construction Fund (Grant No. 111800M000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Runcong Liu or Xiaodong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 24, 2021; accepted September 11, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Hao, W., Liu, R. et al. Effect of Modulated Helical Magnetic Field on Solidifying Segregation of Sn–3.5 Wt Pct Pb Alloy in a Directional Solidification. Metall Mater Trans B 53, 71–83 (2022). https://doi.org/10.1007/s11663-021-02330-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02330-3

Navigation