Skip to main content
Log in

Reaction Behavior of Na2SO4-Containing Copper Matte Powders in a Simulated Flash Converting Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Sodium sulfate accumulation in the water system is a common problem in the production of primary metals from sulfide minerals. In flash smelting-flash converting copper smelters, when molten copper matte quenched in industrial water to produce matte granules, Na2SO4 precipitated and entered the system, which had negative influence on the matte converting process. The reaction behaviors of copper matte powder containing Na2SO4 have been studied through thermodynamic calculation and single-particle experiments. Calculated results showed that a liquid sulfate phase, Na2S containing copper matte, and Cu–Na alloy may form in the processing conditions of the converting process. The influence of the Na2SO4 dosage, fluxing conditions, and processing temperature has been systematically studied, and the results obtained showed that: (1); Na2SO4 physically precipitated on matte particles, and the Cu–Na alloy phase was found within copper phase in reacted particles; (2); Na2SO4 contamination hindered oxygen transfer by forming a low melting sulfate phase, and the de-sulfuration rate of matte powder changed dramatically along with the variation in Na2SO4 amount; (3); CaO flux was able to promote the converting reactions and Na2SO4 transformation; (4); Na2SO4 melt and formed a sulphate layer on matte particles at 1000 °C, Cu–Na alloy phase was found in samples collected at 1200 °C, and Cu–Na–O phase was detected in blister copper at 1600 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.A. Asteljoki, L.K. Bailey, D.B. George, and D.W. Rodolff: J. Met., 1985, vol. 20, pp. 245-250.

    Google Scholar 

  2. K.E. Sutliff, T.I. Probert, and C.T. Unger (partI) and J.E. Hoffmann, K.E. Sutliff, B.A. Wells, and D.B. George (Part II): JOM, 1996, vol. 48(8), pp. 42–44.

  3. P. Hanniala, I. Kojo, and M. Kytö: TMS, 1994, pp. 107–19.

  4. P. Hanniala, I. Kojo, and M. Kytö. TMS, 1998, pp. 239–47.

  5. D. George. TMS, 2000, pp. 3–13.

  6. [6] I. Kojo, A. Jokilaakso, and P. Hanniala. JOM, 2000, vol. 52(2), pp. 57-61.

    Article  CAS  Google Scholar 

  7. [7] I. Kojo, A. Jokilaakso, and P. Hanniala. Rudy Met. Niezelaz., 2000, vol. 45(12), pp. 606-612.

    Google Scholar 

  8. A.D. Wan, W.S. Guo, G.S. Zhang, J.P. Zhang, and X.F. Xie. Nonferr Metall Equip., 2017, pp. 52–57. (In Chinese).

  9. [9] J. Zhou. Nonferr Met., 2017, vol. 10, pp. 1-9. (In Chinese)

    Google Scholar 

  10. M.M. Congress and M.J. Jones: Proceedings of the Ninth Commonwealth Mining & Metallurgical Congress, 1970.

  11. I. Kojo, M. Lahtinen, and E. Miettinen: International Peirce-Smith Converting Centennial Symposium Held at the 2009 TMS Annual Meeting and Exhibition, San Francisco, The USA, 2009, pp. 15–19.

  12. Z.H. Liu and L.G. Xia: Miner. Process. Extr. Metall. 2018, vol. 127(1), pp. 117-124.

    Google Scholar 

  13. [13] Z.A. Wang, W. Yang, H. Liu, H. Jin, H.Q. Chen, K. Su, Y.J. Tu and W.L. Wang. J. Anal. Appl. Pyrolysis., 2019, vol. 142, pp. 1-10.

    CAS  Google Scholar 

  14. [14] R.R. Moskalyk, and A.M. Alfantazi. Miner. Eng.,2003, vol. 16, pp. 893-919.

    Article  CAS  Google Scholar 

  15. [15] D. Freyer, and W. Voigt. .Monatsh. Chem., 2003, vol. 134(5), pp. 693-719.

    Article  CAS  Google Scholar 

  16. P. Ren: World Nonferrous Metal. 2018;496(4), pp. 27–28

    Google Scholar 

  17. L.G. Xia, F. Yu, H.B. Shao, Y. Shen, L.T. Yue, P. Ren, and Z.H. Liu: COM 2019, Vancouver, Canada, 2019, Paper ID, 589867.

  18. [18] C. Jeffrey, A. Hallet, and H. Kurt. J. Phys. Chem., 1980, vol. 84(13), pp. 1699-1704.

    Article  Google Scholar 

  19. [19] Z.Q. Yan, Z.A. Wang, X.F. Wang, H. Liu, and T.R. Qiu. Trans. Nonferrous Met. Soc. China., 2015, vol. 25, pp. 3490-3497.

    Article  CAS  Google Scholar 

  20. [20] S. Aggoun, M. Cheikh-Zouaoui, N. Chikh, and R. Duval. Constr. Build. Mater., 2008, vol. 22, pp. 106-110.

    Article  Google Scholar 

  21. [21] F. Yu, Z.H. Liu, F.C. Ye, L.G. Xia, and A. Jokilaakso: JOM., 2020, vol. 73, pp. 694-702.

    Article  Google Scholar 

  22. M. Shevchenko and E. Jak: CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2020, vol. 71, Paper ID:102011.

  23. [23] L. Feng, Y.M. Sun, X.L. Zhao, R.M. Wang, K. Zhang, and J.Y. Yang: Trans. Nonferrous Met. Soc. China., 2015, vol. 25, pp. 3553-3559.

    Article  CAS  Google Scholar 

  24. [24] A.B. Kulakov, A.N. Maljuk, M. Sofifin, C.T. Lin, B. Keimer, and M. Jansen. J. Solid State Chem., 2004, vol. 177, pp. 3274-3280

    Article  CAS  Google Scholar 

  25. [25] A. Roine. HSC Chemistry, Outokumpu Reasearch Oy, Pori, Finland, 2020.

    Google Scholar 

  26. [26] S.E. Perez-Fontes, M. Perez-Tello and L.O. Prieto-Lopez: Miner. Metall. Process., 2007, vol. 24(4), pp. 1-7.

    Google Scholar 

  27. [27] R.O. Suominen, A. Jokilaakso, P. Taskinen and K.R. Lilius: Scand. J. Metall., 1991, vol. 20(4), pp. 245-250.

    CAS  Google Scholar 

  28. [28] M. Perez-Tello, H.Y. Sohn, and J. Lottiger. Miner. Metall. Process., 1999, vol. 16(2), pp. 1-7.

    CAS  Google Scholar 

  29. [29] M. Perez-Tello, H.Y. Sohn, and P.J. Smith: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 869-886.

    Article  CAS  Google Scholar 

  30. [30] M. Perez-Tello, H.Y. Sohn, K.S. Marie and A. Jokilaakso. Metall. Mater. Trans. B, 2001, vol. 32B, pp. 847-868

    Article  CAS  Google Scholar 

  31. [31] M. Pérez-Tello, V.R. Parra-Sánchez, V.M. Sánchez-Corrales, A. Gomez-Alvarez, F. Brown-Bojorquez, P.A. Parra-Figueroa, E.R. Balladares-Varela and E.A. Araneda-Hernandez. Metall. Mater. Trans. B, 2018, vol. 47(2), pp. 627-643.

    Article  Google Scholar 

  32. [32] R.L. Jones, and K.H. Stern. Ind. Eng. Chem. Prod. Res. Dev., 1980, vol. 79, pp. 158-165.

    Article  Google Scholar 

  33. M. Petrowsky and R. Frech (2009) J. Phys. Chem. B 113(17), pp. 5996-6000.

    Article  CAS  Google Scholar 

  34. [34] W.G. Davenport, M. King, M. Schlesinger, and A.K. Biswas: Extractive Metallurgy of Copper, 4th ed., Elsevier Science, Oxford, 2002.

    Google Scholar 

  35. [35] M. Goto, S. Kawakita, N. Kikumoto, and O. Iida. JOM, 1986, vol. 38 (9), pp. 43-46.

    Article  CAS  Google Scholar 

  36. [36] Y. Takeda, S. Nakazawa, and A. Yazawa: Can. Metall. Q., 1980, vol. 19 (3), pp. 297-305.

    Article  CAS  Google Scholar 

  37. F. Tanaka, O. Iida, and Y. Takeda: International Symposium on Metallurgical and Materials Processing, San Diego, 2003, vol. 2, pp. 495–508.

  38. [38] S. Nikolic, P.C. Hayes, E. Jak. Metall. Mater. Trans. B, 2009, vol. 40(6), pp. 892-899.

    Article  CAS  Google Scholar 

  39. N. Mihara, D. Kuchar, Y. Kojima, and H. Matsuda (2007) J. Mater. Cycles Waste Manag. vol. 9(1), pp. 21-26.

    Article  CAS  Google Scholar 

  40. Z.A. Wang, W. Yang, H. Liu, H. Jin, H.Q. Chen, K. Su, Y.J. Tu, and W.L. Wang: J. Anal. Appl. Pyrol., 2019, vol. 142, Paper ID: 104617.

  41. [41] I. Gruncharov, Y. Pelovski, G. Bechev, and I. Dombalov. J. Therm. Anal. Calori.,1988, vol. 33(3), pp. 597-602.

    Article  Google Scholar 

  42. M. Viale, O. Martin, F. Muratoria, U. Bertezzoloa, J. Perezc, C. Partemioc, and J. Usartb. Proc. SPIE, 2007, vol. 6541, pp. 65410H1-11.

  43. M.E. Schlesinger, M.J. King, K.C. Sole, and W.G. Davenport: Extractive Metallurgy of Copper (Fifth Edition), 2011

  44. [44] A.Yazawa. J. Min. Inst. Jpn., 1956, vol. 72, pp. 305-311.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was funded by the National Natural Science Foundation of China (No. 52004341) and the National Solid Waste Project (No. 2018YFC1902503). The financial support from the “111” project (Green and Value-Added Metallurgy of Non-ferrous Resources) and Central South University Starting-up fund (Faculty No. 217030) are also acknowledged. The authors also thank Mr Peng Ren for the help in the experimental part.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longgong Xia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 16, 2021; accepted June 30, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, F., Xia, L., Zhu, Y. et al. Reaction Behavior of Na2SO4-Containing Copper Matte Powders in a Simulated Flash Converting Process. Metall Mater Trans B 52, 3468–3476 (2021). https://doi.org/10.1007/s11663-021-02275-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02275-7

Navigation