Skip to main content
Log in

Morphology Tailoring and Enhanced Inclusion Removal of Liquid Melt Film by Regulating the Magnetic Flux Density During Magnetic Controlled ESR Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The current study focuses on the influences of magnetic flux density (MFD) on liquid melt film (LMF) morphology and inclusion removal during magnetic controlled electroslag remelting (MC-ESR) process (GCr15 bearing steel). The average thickness of LMF was reduced by 21.0, 33.0 and 41.3 pct, respectively, after applying a 35, 65 and 95 mT transverse static magnetic field (TSMF). This phenomenon can be attributed to the accelerated dynamic process (LMF aggregating to form droplet and droplet dripping) under TSMF condition, which was more obvious as larger MFD was applied. In addition, the kinetic conditions for inclusion removal in LMF were also enhanced with the increase of the MFD (0 to 95 mT), leading to a gradual decrease in the number and size of inclusions in LMF. This work highlights the LMF morphology tailoring and inclusions removal enhancement by regulating the MFD of applied TSMF as well as guides the industrial application of MC-ESR technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. [1] L. Zhang, B.G. Thomas: Metall. Mater. Trans. B, 2006, vol. 37, pp. 733-61.

    Article  CAS  Google Scholar 

  2. [2] H.B. Xue, Y.F. Cheng: Corros. Sci., 2011, vol. 53, pp. 1201-08.

    Article  CAS  Google Scholar 

  3. [3] T. Atkins: J. Mater. Process. Technol., 2018, vol. 261, pp. 280-94.

    Article  Google Scholar 

  4. [4] J. Fu: Acta Metall. Sin., 1979, vol. 15, pp. 526-39.

    CAS  Google Scholar 

  5. [5] Z.B. Li, W.H. Zhou, and Y.D. Li: Iron Steel, 1980, vol. 01, pp. 20-26.

    Google Scholar 

  6. [6] D. Zhan, Z. Yangpeng, R.J. Liu, Z.H. Jiang, and H.S. Zhang: Iron. Steel., 2016, vol. 44, pp. 1-9.

    Google Scholar 

  7. [7] Y. Liu, X. Wang, G. Li, Q. Wang, Z. Zhang, and B. Li: Vacuum, 2018, vol. 154, pp. 351-58.

    Article  CAS  Google Scholar 

  8. [8] Z.H. Jiang, D. Hou, Y. Dong, Y. Cao, H.B. Cao, and W. Gong: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1465-74.

    Article  Google Scholar 

  9. [9] D. Hou, Z.H. Jiang, Y. Dong, W. Gong, Y. Cao, and H.B. Cao: ISIJ Int., 2017, vol. 57, pp. 1400-09.

    Article  CAS  Google Scholar 

  10. [10] G. Du, J. Li, and Z.B. Wang: ISIJ Int., 2018, vol. 58, pp. 78-87.

    Article  CAS  Google Scholar 

  11. [11] C. Shi, W.T. Yu, H. Wang, J. Li, and M. Jiang: Metall. Mater. Trans. B, 2016, vol. 48, pp. 146-61.

    Google Scholar 

  12. [12] X.F. Shi, L.Z. Chang, and J.J. Wang: Int. J. Miner. Metall. Mater., 2015, vol. 22, pp. 1033-42.

    Article  CAS  Google Scholar 

  13. [13] I.V. Chumanov, M.A. Matveeva, and D.V. Sergeev: Steel in Translation, 2019, vol. 49, pp. 77-81.

    Article  Google Scholar 

  14. [14] H.B. Cao, Z.H. Jiang, Y.W. Dong, F.B. Liu, Z.W. Hou, K. Yao, and J. Yu: ISIJ Int., 2020, vol. 60, pp. 247-57.

    Article  CAS  Google Scholar 

  15. [15] Y.F. Qi, J. Li, C.B. Shi, Y. Zhang, Q.T. Zhu, and H. Wang: J. Mater. Process. Technol., 2017, vol. 249, pp. 32-38.

    Article  CAS  Google Scholar 

  16. [16] X. Shi, S.C. Duan, W.S. Yang, M.T. Mao, H.J. Guo, and J. Guo: Metall. Mater. Trans. B, 2019, vol. 50, pp. 3072-87.

    Article  Google Scholar 

  17. [17] Y.Y. Kompan, I.V. Protokovilov: Metallic Materials with High Structural Efficiency, Springer, Dayton, 2004, pp. 413-18.

    Book  Google Scholar 

  18. [18] Y. Kompan, I. Protokovilov, Y. Fautrelle, Y. Gelfgat, and A. Bojarevics: Magnetohydrodynamics, 2010, vol. 46, pp. 317-24.

    Article  Google Scholar 

  19. [19] Q. Wang, H. Yan, F. Wang, and B. Li: JOM, 2015, vol. 67, pp. 1821-29.

    Article  CAS  Google Scholar 

  20. [20] Y.B. Zhong, L.I. Qiang, Y.P. Fang, H. Wang, M.H. Peng, L.C. Dong, T.X. Zheng, Z.S. Lei, W.L. Ren, and Z.M. Ren: Mater. Sci. Eng. A, 2016, vol. 660, pp. 118-26.

    Article  CAS  Google Scholar 

  21. [21] Q. Li, Y.B. Zhong, C.X. Sun, H. Wang, T.X. Zheng, W.L. Ren, and Z.M. Ren: Acta Metall. Sin. (English Letters), 2018, vol. 31, pp. 1311-16.

    Article  CAS  Google Scholar 

  22. [22] Q. Li, Z.B. Xia, Y.F. Guo, Z. Shen, T.X. Zheng, and Y.B. Zhong: ISIJ Int., 2020, vol. 60, pp. 2462-70.

    Article  CAS  Google Scholar 

  23. [23] Y.F. Guo, Z.B. Xia, Z. Shen, Q. Li, C.X. Sun, T.X. Zheng, W.L. Ren, Z.S. Lei, and Y.B. Zhong: J. Mater. Process. Technol., 2021, vol. 290, pp. 116962.

    Article  CAS  Google Scholar 

  24. [24] C.X. Sun, Y.F. Guo, Q. Li, Z. Shen, T.X. Zheng, H. Wang, W.L. Ren, Z.S. Lei, and Y.B. Zhong: Metals, 2020, vol. 10, pp. 647.

    Article  CAS  Google Scholar 

  25. [25] Q. Wang, Z. He, G. Li, B. Li, C. Zhu, and P. Chen: Int. J. Heat Mass Transfer, 2017, vol. 104, pp. 943-51.

    Article  CAS  Google Scholar 

  26. [26] H. Wang, Y.B. Zhong, Q. Li, W.Q. Li, W.L. Ren, Z.S. Lei, Z.M. Ren, and Q. He: ISIJ Int.,2017, vol. 57, pp. 2157-64.

    Article  CAS  Google Scholar 

  27. [27] Y. F. Guo, Z. B. Xia, Z. Shen, Q. Li, C. X. Sun, T. X. Zheng, W. L. Ren, Z. S. Lei, Y. B. Zhong: Metall. Mater. Trans. B, 2021, vol. 52, pp. 282-91.

    Article  Google Scholar 

  28. [28] Q. Ren, Y.X. Zhang, Y. Ren, L.F. Zhang, J.J. Wang, and Y.D. Wang: J. Mater. Sci. Technol., 2021, vol. 61, pp. 147-158.

    Article  Google Scholar 

  29. [29] C. Shi, X. Chen, H. Guo, Z. Zhu, and H. Ren: Steel Res. Int., 2012, vol. 83, pp. 472–86.

    Article  CAS  Google Scholar 

  30. [30] S.J. Li, G.G. Cheng, Y. Huang, W.X. Dai, and Z.Q. Miao: Metals, 2019,vol. 09, pp. 467.

    Article  CAS  Google Scholar 

  31. [31] H. Wang, J. Li, C.B. Shi, Y.F. Qi, and Y.X. Dai: ISIJ Int., 2019, vol. 59, pp. 828-38.

    Article  CAS  Google Scholar 

  32. [32] Z.B. Li: Electroslag Metallurgy Theory and Practice, Metallurgical Industry Press, Beijing, 2010, pp. 22–26.

    Google Scholar 

  33. Q. Wang, G.Q. Li, Z. Hfsse, B.K. Li: Appl. Therm. Eng,, 2017, vol. 114, pp. 874-86.

    Article  CAS  Google Scholar 

  34. [34] P. G. Saffman: J. Fluid. Mech., 1965, vol. 22, pp. 385-88.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledged the financial support of the National Key Research and Development Program of China (2016YFB0300401, 2018YFF0109404, 2016YFB0301401), the National Natural Science Foundation of China (U1860202, U1732276, 50134010, 51704193, 51904184, 52004156), Science and Technology Commission of Shanghai Municipality (13JC14025000, 15520711000) and China Postdoctoral Science Foundation (2020M671072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhe Shen or Yunbo Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 16, 2021; accepted June 19, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Ma, C., Xia, Z. et al. Morphology Tailoring and Enhanced Inclusion Removal of Liquid Melt Film by Regulating the Magnetic Flux Density During Magnetic Controlled ESR Process. Metall Mater Trans B 52, 3383–3392 (2021). https://doi.org/10.1007/s11663-021-02268-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02268-6

Navigation