Skip to main content
Log in

Mg and Mg-Based Blowing Agents for Aluminum Foam

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, the effectiveness of three different types of Mg-based blowing agents on the structure and properties of aluminum alloy foam was compared. AlMg15Cu10 alloy foams were produced by the powder metallurgy route using pure Mg, Al50Mg50 and Al60Mg40 powders as blowing agents. Al50Mg50 and Al60Mg40 powders were synthesized by ball milling and melt milling, and were characterized by particle size analysis, XRD and SEM. Foams were characterized by using X-ray tomography, SEM and XRD. Mechanical properties were obtained through quasi-static compression tests. It was observed that the foams produced by Mg possess spherical cells whereas more polyhedral cells were obtained in the foams produced by Al50Mg50 and Al60Mg40. The finest cells were produced by Al60Mg40 powder. Variation in the cell size is attributed to the different hydrogen contents of these blowing agents. All foams resulted in a good porous structure and possess high compressive strength compared with conventional foams.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. 1. J. Banhart, Progress in Materials Science 2001, vol. 46, pp. 559-632.

    CAS  Google Scholar 

  2. 2. F. García-Moreno, Materials 2016, vol. 9, pp. 85-111.

    Google Scholar 

  3. 3. J. Banhart and H.W. Seeliger, Advanced Engineering Materials 2008, vol. 10, pp. 793-802.

    CAS  Google Scholar 

  4. L.J. Gibson and M.F. Ashby: Cellular solids: structure and properties. Cambridge : Cambridge University Press, 1999).

    Google Scholar 

  5. 5. S. Kim and C.-W. Lee, Procedia Materials Science 2014, vol. 4, pp. 305-309.

    Google Scholar 

  6. 6. M. Mukherjee, U. Ramamurty, F. Garcia-Moreno and J. Banhart, Acta Materialia 2010, vol. 58, pp. 5031-5042.

    CAS  Google Scholar 

  7. 7. B. Matijasevic-Lux, J. Banhart, S.. Fiechter, O.. Görke and N. Wanderka, Acta Materialia 2006, vol. 54, pp. 1887-1900.

    CAS  Google Scholar 

  8. 8. P.H. Kamm, F. García-Moreno, C. Jiménez and J. Banhart, Journal of Materials Research 2013, vol. 28, pp. 2436-2443.

    CAS  Google Scholar 

  9. 9. T. Koizumi, K. Kido, K. Kita, K. Mikado, S. Gnyloskurenko and T. Nakamura, Materials Transactions 2011, vol. 52, pp. 728-733.

    CAS  Google Scholar 

  10. B. Matijasevic, O. Görke, H. Schubert and J. Banhart: Proceedings of JIMIC-4 MetFoam2005, Porous Metals and Metal Foaming Technology. 2006.

  11. 11. C. Jiménez, F. Garcia-Moreno, B. Pfretzschner, M. Klaus, M. Wollgarten, I.. Zizak, G. Schumacher, M. Tovar and J. Banhart, Acta Materialia 2011, vol. 59, pp. 6318-6330.

    Google Scholar 

  12. 12. L. Helfen, T. Baumbach, H. Stanzick, J. Banhart, A. Elmoutaouakkil and P. Cloetens, Advanced Engineering Materials 2002, vol. 4, pp. 808-813.

    CAS  Google Scholar 

  13. 13. M. Mukherjee, F.. Garcia-Moreno and J. Banhart, Scripta Materialia 2010, vol. 63, pp. 235-238.

    CAS  Google Scholar 

  14. 14. A. Andreasen, International Journal of Hydrogen Energy 2008, vol. 33, pp. 7489-7497.

    CAS  Google Scholar 

  15. 15. C. Jiménez, F. Garcia-Moreno, J. Banhart, G. Zehl, L.P. Lefebvre and D. Dunand, Porous Metals and Metallic Foams: Metfoam 2007 2008, pp. 59-62.

    Google Scholar 

  16. 16. M. Mukherjee, F. Garcia-Moreno, C. Jiménez and J.. Banhart, Advanced Engineering Materials 2010, vol. 12, pp. 472-477.

    CAS  Google Scholar 

  17. 17. S. Bouaricha, J.P. Dodelet, D. Guay, J. Huot, S. Boily and R. Schulz, Journal of Alloys and Compounds 2000, vol. 297, pp. 282-293.

    CAS  Google Scholar 

  18. 18. E.W. Andrews, G. Gioux, P. Onck and L.J. Gibson, International Journal of Mechanical Sciences 2001, vol. 43, pp. 701-713.

    Google Scholar 

  19. 19. I. Jeon and T. Asahina, Acta Materialia 2005, vol. 53, pp. 3415-3423.

    CAS  Google Scholar 

  20. 20. H. Okamoto, Journal of Phase Equilibria and Diffusion 1998, vol. 19, p. 598.

    CAS  Google Scholar 

  21. A.K. Chaubey, S. Scudino, M. SamadiKhoshkhoo, K.G. Prashanth, N.K. Mukhopadhyay, B.K. Mishra and J. Eckert, J. Alloys Compd. 2014, vol. 610, pp. 456-461.

    CAS  Google Scholar 

  22. 22. A.R. Cooper Jr and L.E. Eaton, Journal of the American Ceramic Society 1962, vol. 45, pp. 97-101.

    CAS  Google Scholar 

  23. 23. C. Suryanarayana, Progress in Materials Science 2001, vol. 46, pp. 1-184.

    CAS  Google Scholar 

  24. 24. K.A. Nazari, A. Nouri and T. Hilditch, Materials Letters 2015, vol. 140, pp. 55-58.

    CAS  Google Scholar 

  25. 25. A. Azimi, A. Shokuhfar and A. Zolriasatein, Materials Science and Engineering: A 2014, vol. 595, pp. 124-130.

    CAS  Google Scholar 

  26. J. Baumeister and H. Schrader: U.S. Patent 5151246 A, 1992.

  27. 27. C. Jiménez, F. Garcia-Moreno, M. Mukherjee, O. Goerke and J.. Banhart, Scripta Materialia 2009, vol. 61, pp. 552-555.

    Google Scholar 

  28. 28. J. Karch, R. Birringer and H. Gleiter, Nature 1987, vol. 330, pp. 556-558.

    CAS  Google Scholar 

  29. 29. M.J. Mayo, R.W. Siegel, Y.X. Liao and W.D. Nix, Journal of Materials Research 1992, vol. 7, pp. 973-979.

    CAS  Google Scholar 

  30. 30. R.N. Lumley, T.B. Sercombe and G.M. Schaffer, Metallurgical and Materials Transactions A 1999, vol. 30, pp. 457-463.

    CAS  Google Scholar 

  31. 31. K. Kondoh, A. Kimura and R. Watanabe, Powder Metallurgy 2001, vol. 44, pp. 161-164.

    CAS  Google Scholar 

  32. A. Andreasen: Report No. 8755034594, Risø National Laboratory, Denmark, 2005.

  33. 33. C. Körner, M. Thies and R. F Singer, Advanced Engineering Materials 2002, vol. 4, pp. 765-769.

    Google Scholar 

  34. B. Vigeholm, K. Jensen, B. Larsen and A. SchrøderPedersen, Journal of the Less Common Metals 1987, vol. 131, pp. 133-141.

    CAS  Google Scholar 

  35. 35. P. Selvam, B. Viswanathan, C.S. Swamy and V. Srinivasan, International Journal of Hydrogen Energy 1986, vol. 11, pp. 169-192.

    CAS  Google Scholar 

  36. 36. P.S. Rudman, Journal of Applied Physics 1979, vol. 50, pp. 7195-7199.

    CAS  Google Scholar 

  37. W.E. Wallace, R.S. Craig, and V.U.S. Rao: Department of Chemistry, University of Pittsburgh, 1978.

  38. 38. L. Schlapbach, A. Seiler and F. Stucki, Materials Research Bulletin 1979, vol. 14, pp. 785-790.

    CAS  Google Scholar 

  39. 39. L. Helfen, T. Baumbach, P.. Pernot, P.. Cloetens, H. Stanzick, K.. Schladitz and J.. Banhart, Applied Physics Letters 2005, vol. 86, p. 231907.

    Google Scholar 

  40. 40. A.. Rack, H.-M. Helwig, A.. Bütow, A. Rueda, B. Matijašević-Lux, L. Helfen, J. Goebbels and J. Banhart, Acta Materialia 2009, vol. 57, pp. 4809-4821.

    CAS  Google Scholar 

  41. D.L. Weaire and S. Hutzler: The Physics of Foams. Oxford: Oxford University Press, 2001.

    Google Scholar 

  42. 42. L.J. Gibson, Annual Review of Materials Science 2000, vol. 30, pp. 191-227.

    CAS  Google Scholar 

  43. 43. M. Kolluri, M. Mukherjee, F.. Garcia-Moreno, J. Banhart and U. Ramamurty, Acta Materialia 2008, vol. 56, pp. 1114-1125.

    CAS  Google Scholar 

  44. 44. Y. Sugimura, A.. Rabiei, A.G. Evans, A.M. Harte and N.A. Fleck, Materials Science and Engineering: A 1999, vol. 269, pp. 38-48.

    Google Scholar 

  45. T. Miyoshi, M. Itoh, T. Mukai, H. Kanahashi, H. Kohzu, S. Tanabe, and K. Higashi: Scripta Mater., 1999, vol. 41, pp. 1055–60.

  46. 46. L.J. Gibson, M.F. Ashby, J. Zhang and T.C. Triantafillou, International Journal of Mechanical Sciences 1989, vol. 31, pp. 635-663.

    Google Scholar 

  47. 47. S. Lee, F. Barthelat, N. Moldovan, H. D. Espinosa and H.N.G. Wadley, International Journal of Solids and Structures 2006, vol. 43, pp. 53-73.

    Google Scholar 

  48. 48. C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa and M. Mabuchi, Materials Letters 2004, vol. 58, pp. 357-360.

    CAS  Google Scholar 

Download references

Acknowledgment

The authors thank the Naval Research Board of Defence Research and Development Organization, India, for funding this study through project number NRB-371/MAT/15-16.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayant Barode.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 15, 2020. Accepted October 10, 2020.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 959 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barode, J., Aravind, U., Bhogi, S. et al. Mg and Mg-Based Blowing Agents for Aluminum Foam. Metall Mater Trans B 52, 292–304 (2021). https://doi.org/10.1007/s11663-020-02008-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-02008-2

Navigation