Skip to main content
Log in

Mechanism of NOx Formation from Nitrogen in the Combustion of the Coals Used in Sintering Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The released NOx during fuel combustion is one of the major air pollutants, directly related to acid rain and photochemical smog. At present, there is not an economical and effective method of inhibiting NOx emission from sintering flue gas. Therefore, controlling the conditions of fuel combustion is extremely required for the reduction in NOx. The current research investigated the effects of different combustion parameters on the formation of NOx for three type of coals. The formation of NOx decreased with increasing temperature and heating rate while it increased when oxygen content in an atmosphere increased. Anthracite coal replacement with coke up to 100 pct promoted a decrease in the formed NOx amount and XNO by 21 and 53 pct, respectively. The addition of CaO and FeO enhanced the conversion of nitrogen to NOx, especially at temperatures below 1273 K (1000 °C). Taking both the oxidation reaction to form NOx and reduction reaction of NOx to form N2 into account, the activation energy (EA) values of anthracite and coke were evaluated to be 2.2 and 3.6 kJ/mol, respectively. The combustion of semi-anthracite coal emitted the largest amount of NOx, but the anthracite coal containing less fuel-N than other coals showed the highest value of XNO, which indicates that nitrogen content in coal is not the major factor affecting the formation of NOx. The change in nitrogen functionality after combustion process might be the reason for the unpredicted results in the XNO. The pyrrolic-N in anthracite coal might be considered to be the major functional form that directly affects the conversion of nitrogen to NO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Gan, X. Fan, X. Chen, Z. Ji, W. Lv, Y. Wang, Z. Yu and T. Jiang: ISIJ International, 2012, vol. 52, No. 9, pp. 1574-1578.

    Article  CAS  Google Scholar 

  2. M. Gan, X. Fan, W. Lv, X. Chen, Z. Ji, T. Jiang, Z. Yu and Y. Zhou: Powder Technology, 2016, vol. 301, pp. 478-485.

    Article  CAS  Google Scholar 

  3. H. Zhou, P. Ma, M. Zhou, Z. Lai and M. Cheng: J. Energy Inst., 2018, pp. 1–11.

  4. M. Gan, Q. Li, Z. Ji, X. Fan, W. Lv, X. Chen, Y. Tian and T. Jiang: ISIJ International, 2017, vol. 57, No. 3, pp. 420-428.

    Article  CAS  Google Scholar 

  5. H. Di, Z. J. He, J. H. Zhang and Q. H. Pang: Metalurgija, 2018, vol. 57, pp. 27-30.

    CAS  Google Scholar 

  6. W. Lv, X. Fan, X. Min, M. Gan, X. Chen and Z. Ji: ISIJ International, 2018, vol. 58, No. 2, pp. 236-243.

    Article  CAS  Google Scholar 

  7. X. Li, R. Zhu, X. Mao, D. Liu and L. Shi: The 9th Korea-China Joint Symposium on Advanced Steel Technology, 2017, Jeju, South Korea.

    Google Scholar 

  8. Z. Yu, X. Fan, M. Gan and X. Chen: Journal of Iron and Steel Research (International), 2017, vol. 24, pp. 1184-1189.

    Article  Google Scholar 

  9. K. Stanczyk: Energy & Fuels, 1999, vol. 13, pp. 82-87.

    Article  CAS  Google Scholar 

  10. Y. Chen, Z. Guo and Z. Wang: Fuel Processing Technology, 2009, vol. 90, pp. 933-938.

    Article  CAS  Google Scholar 

  11. Y. Chen, Z. Guo and G. Feng: International Journal of Minerals, Metallurgy and Materials, 2011, vol. 18, No. 4, pp. 390-396.

    Article  CAS  Google Scholar 

  12. H. Han, Y. Chen, C. Xie, D. Yuan, Y. Chen and B. Wang: Advanced Materials Research, 2013, vols. 781-784, pp. 2594-2597.

    Article  CAS  Google Scholar 

  13. Y. Chen, Z. Guo and Z. Wang: ISIJ International, 2008, vol. 48, No. 11, pp. 1517-1523.

    Article  CAS  Google Scholar 

  14. Y. Chen, Z. Guo, Z. Wang and G. Feng: International Journal of Minerals, Metallurgy and Materials, 2009, vol. 16, No. 2, pp. 143-148.

    Article  Google Scholar 

  15. K. Katayama and S. Kasama: ISIJ International, 2016, vol. 56, No. 9, pp. 1563-1569.

    Article  CAS  Google Scholar 

  16. H. Teng, Y. F. Hsu and Y. T. Tu: Applied Catalysis B: Environmental, 1999, vol. 20, pp. 145-154.

    Article  CAS  Google Scholar 

  17. K. Morioka, S. Inaba, M. Shimizu, K. Ano and T. Sugiyama: ISIJ International, 2000, vol. 40, No. 3, pp. 280-285.

    Article  CAS  Google Scholar 

  18. J. Han, X. He, L. Qin, W. Chen and F. Yu: Ironmaking & Steelmaking, 2014, vol. 41, No. 5, pp. 350-354.

    Article  CAS  Google Scholar 

  19. H. Zhou, M. Zhou, Z. Liu, M. Cheng and J. Chen: Fuel, 2016, vol. 179, pp. 322-331.

    Article  CAS  Google Scholar 

  20. Z. Yu, X. Fan, M. Gan, X. Chen and W. Lv: JOM, 2017, vol. 69, No. 9, pp. 1570-1574.

    Article  CAS  Google Scholar 

  21. H. Zhou, P. Ma, M. Cheng, M. Zhou and Y. Li: ISIJ International, 2018, vol. 58, No. 9, pp. 1650-1658.

    Article  CAS  Google Scholar 

  22. C. Wang, Y. Du and D. Che: Energy Fuels, 2012, vol. 26, pp. 7367-7377.

    Article  CAS  Google Scholar 

  23. B. Su, S. Wu, G. Zhang, Z. Que and C. Hou: 6th International Symposium on High-Temperature Metallurgical Processing, 2015, pp. 387–94.

  24. J. Song, H. Yuan and J. Deng: IOP Conf. Ser.: Earth Environ. Sci., 2015, vol. 113, pp. 1–7.

  25. X. Fan, Z. Yu, M. Gan, X. Chen, Q. Chen, S. Liu and Y. Huang: ISIJ International, 2015, vol. 55, No. 10, pp. 2074-2081.

    Article  CAS  Google Scholar 

  26. D. G. Gavin and M. A. Dorrington: Fuel, 1993, vol. 72, pp. 381-388.

    Article  CAS  Google Scholar 

  27. R. Guan, W. Li, H. Chen and B. Li: Fuel Chemistry Division Preprints, 2003, vol. 48, No. 1, pp. 310-311.

    CAS  Google Scholar 

  28. Z. Zhao, W. Li, J. Qiu and B. Li: Fuel, 2003, vol. 82, pp. 1839-1844.

    Article  CAS  Google Scholar 

  29. Z. Zhao, W. Li, J. Qiu, X. Wang and B. Li: Fuel, 2006, vol. 85, pp. 601-606.

    Article  CAS  Google Scholar 

  30. J. Wu, B. Wang, H. H. Lou, F. Yang and F. Cheng: Asia-Pac. J. Chem. Eng., 2016, vol. 11, pp. 735-742.

    Article  CAS  Google Scholar 

  31. S. Wu, T. Sugiyama, K. Morioka, E. Kasai and Y. Omori: Tetsu-to-Hagane, 1994, vol. 80, No. 4, pp. 276-281.

    Article  CAS  Google Scholar 

  32. E. Kasai and F. Saito: Kagaku Kogaku Ronbunshu, 1994, vol. 20, pp. 857-864.

    Article  CAS  Google Scholar 

  33. H. G. Lee: Chemical Thermodynamics For Metals and Materials, Imperial College Press, London, 1999.

    Book  Google Scholar 

  34. K. M. Thomas: Fuel, 1997, vol. 76, No. 6, pp. 457-473.

    Article  CAS  Google Scholar 

  35. W. Wang, S. D. Brown, C. J. Hindmarsh and K. M. Thomas: Fuel, 1994, vol. 73, No. 9, pp. 1381-1388.

    Article  CAS  Google Scholar 

  36. J. E. Johnsson: Fuel, 1994, vol. 73, No. 9, pp. 1398-1415.

    Article  CAS  Google Scholar 

  37. H. Wang, P. Zhang and J. Yang: IOP Conf. Ser.: Earth Environ. Sci., 2018, vol. 121, pp. 1–8.

  38. M. S. Lee and S. C. Shim: ISIJ International, 2004, vol. 44, No. 3, pp. 470-475.

    Article  CAS  Google Scholar 

  39. M. Tsujimura, T. Furusawa and D. Kunii: Journal of Chemical Engineering of Japan, 1983, vol. 16, No. 2, pp. 132-136.

    Article  CAS  Google Scholar 

  40. C. K. S. Lai, W. A. Peters and J. P. Longwell: Energy & Fuels, 1988, vol. 2, pp. 586-588.

    Article  CAS  Google Scholar 

  41. M. J. Illan-Gomez, A. Linares-Solano, L. R. Radovic and C. S. M. de Lecea: Energy & Fuels, 1995, vol. 9, pp. 540-548.

    Article  CAS  Google Scholar 

  42. H. Knicker, P. G. Hatcher and A. W. Scaroni: Energy & Fuels, 1995, vol. 9, pp. 999-1002.

    Article  CAS  Google Scholar 

  43. P. Burchill and L. S. Welch: Fuel, 1989, vol. 68, pp. 100-104.

    Article  CAS  Google Scholar 

  44. P. F. Nelson, M. D. Kelly and M. J. Wornat: Fuel, 1991, vol. 70, pp. 403-407.

    Article  Google Scholar 

  45. S. Kambara, T. Takarada, M. Toyoshima and K. Kato: Fuel, 1995, vol. 74, No. 9, pp. 1247-1253.

    Article  CAS  Google Scholar 

  46. J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu and K. M. Thomas: Carbon, 1995, vol. 33, No. 11, pp. 1641-1653.

    Article  CAS  Google Scholar 

  47. M. A. Wojtowicz, J. R. Pels and J. A. Moulijn: Fuel, 1995, vol. 74, No. 4, pp. 507-516.

    Article  CAS  Google Scholar 

  48. Y. Zhang, J. Zhang, C. Sheng, J. Chen, Y. Liu, L. Zhao and F. Xie: Energy Fuels, 2011, vol. 25, pp. 240-245.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Mo Jung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 23, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomas da Rocha, L., Kim, H., Lee, C. et al. Mechanism of NOx Formation from Nitrogen in the Combustion of the Coals Used in Sintering Process. Metall Mater Trans B 51, 2068–2078 (2020). https://doi.org/10.1007/s11663-020-01923-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01923-8

Navigation