Skip to main content
Log in

Characteristics of Bi-metallic Interfaces Formed During Direct Energy Deposition Additive Manufacturing Processing

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Various additive manufacturing processes are being evaluated to reduce the time and cost for fabrication of low volume, complex, and multifunctional assemblies. This study evaluated two direct energy deposition processes for the fabrication of large bi-metallic structures. The materials evaluated were Inconel 625 and copper alloy C18150, which are used in various high heat flux applications. Inconel was deposited onto the C18150 substrate using blown powder and wire-fed processes. Complete bonding was obtained in both processes and the resulting interfaces were evaluated using microscopy and indentation testing. Differences were observed in the interface region suggesting the kinetic energy of the blown powder process resulted in more residual stress at the interface, promoting recrystallization and enhanced diffusion. This created a broader interface in the blown powder specimens compared to a narrower mechanically mixed interface with the wire-fed process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. W.E. Frazier: JMEPEG, 2014, vol. 23, pp. 1917-1928. https://doi.org/10.1007/s11665-014-0958-z.

    Article  Google Scholar 

  2. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff and S.S. Babu: Intl. Mat. Reviews, 2016, vol. 61, no. 5, pp. 315-360. https://doi.org/10.1080/09506608.2015.1116649.

    Article  Google Scholar 

  3. A. Bandyopadhyay and K.D. Traxel: JAM, 2018, vol. 22, pp. 758-774.

    Google Scholar 

  4. V.V. Rybin and D.L. Smith: J. Nuclear Matl., 1992, vol. 191-194, pp. 30-36.

    Article  Google Scholar 

  5. J.M. Kazaroff and G.A. Repas: NASA Technical Paper No. 2694, 1987.

  6. P.R. Gradl: 2016, AIAA Conf. Proc. No. 2016–4771. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160009709.pdf. Accessed 22 March 2017.

  7. A. Bandyopadhyay and B. Heer: Mat. Sci. & Engr. Review, 2018, vol. 129, pp. 1-16.

    Article  Google Scholar 

  8. B. Onuike, B. Heer and A. Bandyopadhyay: JAM, 2018, vol. 21, pp. 133-140.

    Google Scholar 

  9. NASA-MSFC Press Release, https://www.nasa.gov/centers/marshall/news/news/releases/2017/nasa-tests-first-3-d-printed-rocket-engine-part-made-with-two-different-alloys.html. Accessed 19 September 2017.

  10. S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal and P. Colegrove: Mater. Sci. Tech., 2016, vol. 32, no. 7, pp. 641-647.

    Article  Google Scholar 

  11. D.C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R.P. Dillon, J.O. Suh, Z.K. Liu and J.P. Borgonia: J. Mater. Res., 2014, vol. 29, no. 17, pp. 1899-1910.

    Article  Google Scholar 

  12. K. Shah, I. Ul Haq, A. Khan, S.A. Shah, M. Khan and A.J Pinkerton: Mater. Des., 2014, vol. 54, pp. 531-538.

    Article  Google Scholar 

  13. H. Sahasrabudhe, R. Harrison, C. Carpenter and A. Bandyopadhyay: JAM, 2015, vol. 5, pp. 1-8.

    Google Scholar 

  14. A. Hinojos, J. Mireles, A. Reichardt, P. Frigola, P. Hosemann, L.E. Murr and R.B. Wicker: Mat. & Design, 2016, vol. 94, pp. 17-27.

    Article  Google Scholar 

  15. B.E. Carroll, R.A. Otis, J.P. Borgonia, J-O Suh, R.P. Dillon, A.A. Shapiro, D.C. Hofmann, Z-K Liu and A.M. Beese: Acta Mater., 2016, vol. 108, pp. 46-54.

    Article  Google Scholar 

  16. A. Reichardt, R.P. Dillon, J.P. Borgonia, A.A. Shapiro, B.W. McEnerney, T. Momose and P. Hosemann: Mat. & Design, 2016, vol. 104, pp. 404-413.

    Article  Google Scholar 

  17. W. Li, S. Karnati, C. Kriewall, F. Liou, J. Newkirk, K.M. Brown-Taminger and W.J. Seufzer: JAM, 2017, vol. 14, pp. 95-104.

    Google Scholar 

  18. Phase Diagrams. European Space Agency. http://www.spaceflight.esa.int/impress/text/education/Solidification/Phase_Diagrams.html#Top. Accessed 5 November 2016.

  19. Haynes International Brochure H-3073D, http://mail.haynesintl.com/pdf/h3073.pdf. Accessed August 2018.

  20. https://alloys.copper.org/alloy/C18150. Accessed 5 September 2017.

  21. Special Metals MONEL® Alloy 400. MatWeb: Material Property Data. http://www.matweb.com/search/datasheet.aspx?matguid=1364d8231703476b8c466cdd07be71b7. Accessed 16 October 2017.

  22. H. L. Eiselstein and D. J. Tillack: TMS pub., 1991, https://doi.org/10.7449/1991/superalloys 1991, pp. 1–14.

  23. A.K. Jena and M.C. Chaturvedi: J. Mat. Sci., 1984, vol. 19, pp. 3121-3139.

    Article  Google Scholar 

  24. American Welding Society C3 Committee on Brazing and Soldering: Brazing Handbook, 5th ed., American Welding Society, Miami, FL, 2007, pp. 169–78.

  25. S. Yin, P. Cavaliere, B. Aldwell, R. Jenkins, H. Liao, W. Li and R. Lupoi: JAM, 2018, vol. 21, pp. 628-650.

    Google Scholar 

  26. S.M. Schwarz, B.W. Kempshall and L.A. Giannuzzi: Acta Mater., 2002, Vol. 51, no. 10, pp. 2765-2776. https://doi.org/10.1016/s1359-6454(03)00082-x.

    Article  Google Scholar 

  27. H.L. Wang, Z.B. Wang and K. Lu: Acta Mater., 2011, vol. 59, pp. 1818-1828.

    Article  Google Scholar 

  28. S.M. Eich, M. Kasprzak, A. Gusak and G. Schmitz: Acta Mater., 2012, vol. 60, pp. 3469-3479.

    Article  Google Scholar 

  29. I. Kaur, Y. Mishin and W. Gust: Fundamentals of grain and interphase boundary diffusion, 3rd ed., Wiley publishers, New York, 1995, pp. 343-349.

    Google Scholar 

  30. B. Wierzba and W. Skibinski: J. Alloys & Comp., 2016, vol. 687, pp. 104-108.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part from NASA STTR Phase I with Keystone Synergistic Enterprises, Inc. Grant No. NNX16CM41P, “Advancing Metal Direct Digital Manufacturing (MDDM) Processes for Reduced Cost Fabrication of Bi-Metallic Cooled Rocket Engines,” and Aetos Systems Grant No. NNM14AA15C/Subcontract No. 2019. A52, “Additive/subtractive manufacturing of combustion devices.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judy Schneider.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 14, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, R., Terrell, J., Schneider, J. et al. Characteristics of Bi-metallic Interfaces Formed During Direct Energy Deposition Additive Manufacturing Processing. Metall Mater Trans B 50, 1921–1930 (2019). https://doi.org/10.1007/s11663-019-01612-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01612-1

Navigation