Skip to main content

Advertisement

Log in

Microstructure, Phase Composition, and Microhardness of the NiCr/Al Gradient Material Produced by Wire-Feed Electron-Beam Additive Manufacturing

  • Published:
Russian Physics Journal Aims and scope

Metal additive manufacturing is one of the new industrial technologies for fast prototyping of the metal components with a complex internal architecture, gradient composition, or functionally gradient properties. Intermetallic alloys are hard-to-work materials, their conventional production and post-production processing are very complex and expensive routine. New production methods, such as an additive manufacturing, are promising for fast and relatively simple fabrication of the intermetallic billets with the desired phase composition and architecture. Multiple-wire electron-beam additive manufacturing is among them. In this work, we fabricated a bimetallic material (plain wall) using the industrial NiCr and Al wires. For the as-built state, we provided the elemental and phase analyses of the NiCr lower part and Al upper part of the billet with the focus on the intermediate gradient layers between two materials. During the additive manufacturing of the NiCr part of the billet, the Ni-based fcc solid solution forms. Scanning electron microscopical analysis, X-ray diffraction analysis, and energy dispersive spectroscopy confirm the formation of NiAl and Ni3Al intermetallic phases in the transition zone under electron beam additive manufacturing of the bimetallic material. This intermetallic zone has high microhardness (up to 10 GPa). The Al3Ni intermetallic phase has been found in the Al-based part of the billet, but the microhardness of the composite material (Al + Al3Ni) is just a bit higher than that in the upper Al-based part of the billet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. E. Frazier, J. Mater. Eng. Perform., 23, 1917–1928 (2014).

    Article  Google Scholar 

  2. C. R. Cunningham, J. M. Flynn, A. Shokrani, et al., Addit. Manuf., 22, 672–686 (2018).

    Google Scholar 

  3. S. Tammas-Williams, H. Zhao, F. Léonard, et al., Mater. Charact., 102, 47–61 (2015).

    Article  Google Scholar 

  4. J. G. Callanan, A. N. Black, S.K. Lawrence, et al., Acta Mater., 246, 118636 (2023).

    Article  Google Scholar 

  5. B. Song, S. Dong, P. Coddet, et al., Mater. Des., 53, 1–7 (2014).

    Article  Google Scholar 

  6. D. Ding, Z. Pan, D. Cuiuri, and H. Li, Int. J. Adv. Manuf. Technol., 81, 1–4 (2015).

    Google Scholar 

  7. B. Utela, D. Storti, R. Anderson, and M. Ganter, J. Manuf. Process., 10, No.2, 96–104 (2008).

    Article  Google Scholar 

  8. D. Wu, J. Shi, F. Niu, et al., J. Eur. Ceram. Soc., 42 (2022); https://doi.org/10.1016/j.jeurceramsoc.2022.12.068.

  9. D. Bourell, J.P. Kruth, M. Leu, et al., CIRP Ann. Manuf. Technol., 66, 659–681 (2017).

    Article  Google Scholar 

  10. K. Osipovich, K. Kalashnikov, A. Chumaevskii, et al., Metals, 13 (2), 279 (2023).

    Article  Google Scholar 

  11. T. DebRoy, H. L. Wei, J. S. Zuback, et al., Prog. Mater. Sci., 92,112–224 (2018).

    Article  Google Scholar 

  12. S. Ma, Y. Li, W. Kan, et al., J. Alloys Compd., 924, 166395 (2022).

    Article  Google Scholar 

  13. S. Astafurov, E. Astafurova, K. Reunova, et al., Mater. Sci. Eng. A, 826 (2), 141951 (2021).

    Article  Google Scholar 

  14. X. Zhang, H. Shi, X. Wang, et al., J. Alloys Compd., 938, 168567 (2023).

    Article  Google Scholar 

  15. N. S. Stoloff, C. T. Liu, and S. C. Deevi, Intermetallics, 8, Nos. 9–11, 1313–1320 (2000).

    Article  Google Scholar 

  16. J. J. S. Dilip, H. Miyaniji, A. Lassel, et al., Defence Technol., 13 (2), 72–76 (2017).

    Article  Google Scholar 

  17. L. Wang, Y. Zhang, X. Hua, et al., Mater. Sci. Eng. A, 812 (10–11), 141056 (2021).

    Article  Google Scholar 

  18. Y. Meng, J. Li, M. Gao, and X. Zeng, J. Manuf. Process. A, 68, 932–939 (2021).

    Article  Google Scholar 

  19. P. Fernandez-Zelaia, M. M. Kirka, A. M. Rossy, et al., Acta Mater., 216 (5), 117133 (2021).

    Article  Google Scholar 

  20. Y. Yu, J. Zhou, J. Chen, et al., Wear, 274, 298–305 (2012).

    Article  Google Scholar 

  21. C. A. Barrett and C. E. Lowell, Oxid. Met., 11, 199–223 (1977).

    Article  Google Scholar 

  22. K. M. Jaansalu, Phase Diagram Modelling: Nickel-Aluminum-Chromium System. Technical Memorandum, Air Vehicle Research Detachment, DCIEM, National Defence Headquarters, Ottawa (1998).

  23. A. V. Kamashev, A. S. Panin, A. L. Petrov, and I. V. Shishkovskii, Appl. Phys. Lett., 27, No. 6, 408–499 (2001).

    Google Scholar 

  24. I. V. Shishkovsky, N. Kakovkina, and F. Missemer, Lasers Eng., 33 (1–3), 1–15 (2016).

    Google Scholar 

  25. S. Sampath, V. P. Ravi, and S. Sundararajan, Crystals, 13 (3), 435 (2023).

    Article  Google Scholar 

  26. E. A. Kolubaev, V. E. Rubtsov, A. V. Chumaevsky, and E. G. Astafurova, Phys. Mesomech., 25, 479–491 (2022).

    Article  Google Scholar 

  27. R. Yamanoglu, E. Karakulak, M. Zeren, and F. G. Koç, Int. J. Cast Met. Res., 26 (5), 289–295 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Reunova.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reunova, K.A., Zagibalova, E.A., Astapov, D.O. et al. Microstructure, Phase Composition, and Microhardness of the NiCr/Al Gradient Material Produced by Wire-Feed Electron-Beam Additive Manufacturing. Russ Phys J 66, 341–349 (2023). https://doi.org/10.1007/s11182-023-02945-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02945-w

Keywords

Navigation