Skip to main content
Log in

Effect of Al2O3 Addition on Mineralogical Modification and Crystallization Kinetics of a High Basicity BOF Steel Slag

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Basic oxygen furnace (BOF) steel slag is a main byproduct that is produced during the converter steelmaking process. The volume instability and fast crystallization of BOF slag limits its added-value application. This article aims to understand the effect of Al2O3 on the mineralogical modification and crystallization kinetics of a high basicity BOF steel slag. Continuous cooling transformation and time–temperature–transformation curves were constructed to determine the crystallization characteristics of BOF slag. The critical cooling rate to vitrify the slag was experimentally obtained. The crystallization sequence was clarified by integrating in situ and post-mortem observations with thermodynamic calculations. The results suggest that the addition of Al2O3 can effectively remove free lime, decrease the melting point, and improve the glass formation ability of the high basicity BOF slag. Undercooling the slag is enhanced by increasing the cooling rate and/or adding Al2O3. By steering the addition of Al2O3 and the cooling rate, BOF slag can be modified to obtain a more amorphous phase, presenting an enhanced potential to be a binder for added-value applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. www.worldsteel.org/statistics. Accessed 25 Feb 2018.

  2. www.euroslag.com/products/statistics. Accessed 23 Dec 2017.

  3. 3 J.M. Manso, J.A. Polanco, M. Losañez, and J.J. González: Cem. Concr. Compos., 2006, vol. 28, pp. 528–34.

    Article  Google Scholar 

  4. 4 Y.J. Xue, S.P. Wu, H.B. Hou, and J. Zha: J. Hazard. Mater., 2006, vol. 138, pp. 261–8.

    Article  Google Scholar 

  5. 5 P. Xue, A. Xu, D. He, Q. Yang, G. Liu, F. Engström, and B. Björkman: Constr. Build. Mater., 2016, vol. 122, pp. 567–76.

    Article  Google Scholar 

  6. 6 K. Yokoyama, H. Kubo, K. Mori, H. Okada, S. Takeuchi, and T. Nagasaka: ISIJ Int., 2007, vol. 47, pp. 1541–8.

    Article  Google Scholar 

  7. 7 S.A. Mikhail and A.M. Turcotte: Thermochim. Acta, 1995, vol. 263, pp. 87–94.

    Article  Google Scholar 

  8. 8 G. Wang, Y.H. Wang, and Z.L. Gao: J. Hazard. Mater., 2010, vol. 184, pp. 555–60.

    Article  Google Scholar 

  9. 9 R.M. Santos, D. Ling, A. Sarvaramini, M.X. Guo, J. Elsen, F. Larachi, G. Beaudoin, B. Blanpain, and T. Van Gerven: Chem. Eng. J., 2012, vol. 203, pp. 239–50.

    Article  Google Scholar 

  10. 10 M. Morone, G. Costa, A. Polettini, R. Pomi, and R. Baciocchi: Miner. Eng., 2014, vol. 59, pp. 82–90.

    Article  Google Scholar 

  11. 11 M. Salman, Ö. Cizer, Y. Pontikes, R.M. Santos, R. Snellings, L. Vandewalle, B. Blanpain, and K. Van Balen: Chem. Eng. J., 2014, vol. 246, pp. 39–52.

    Article  Google Scholar 

  12. 12 H. Alanyali, M. Çöl, M. Yilmaz, and Ş. Karagöz: Int. J. Appl. Ceram. Technol., 2009, vol. 6, pp. 736–48.

    Article  Google Scholar 

  13. 13 T.H. Su, H.J. Yang, Y.C. Lee, Y.H. Shau, E. Takazawa, M.F. Lin, J.L. Mou, and W.T. Jiang: Steel Res. Int., 2016, vol. 87, pp. 1511–1526.

    Article  Google Scholar 

  14. 14 C.W. Liu, M.X. Guo, L. Pandelaers, B. Blanpain, and S.G. Huang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3237-40.

    Article  Google Scholar 

  15. 15 D. Ionescu, T.R. Meadowcroft, and P.V. Barr: Adv. Cem. Res., 2001, vol. 13, pp. 21–30.

    Article  Google Scholar 

  16. 16 A. Rai, J. Prabakar, C.B. Raju, and R.K. Morchalle: Constr. Build. Mater., 2002, vol. 16, pp. 489–94.

    Article  Google Scholar 

  17. 17 S. Onisei, K. Lesage, B. Blanpain, and Y. Pontikes: J. Am. Ceram. Soc., 2015, vol. 9, pp. 2269–77.

    Article  Google Scholar 

  18. J. Provis and J.V. Deventer: Alkali Activated Materials: State-of-the-Art Report, Springer Science & Business Media, 2013, pp.11-13.

    Google Scholar 

  19. 19 P. Duxson, J.L. Provis, G.C. Lukey, and J.S.J. van Deventer: Cem. Concr. Res., 2007, vol. 37, pp. 1590–7.

    Article  Google Scholar 

  20. 20 J.N. Murphy, T.R. Meadowcroft, and P.V. Barr: Can. Metall. Q., 1997, vol. 36, pp. 315–31.

    Article  Google Scholar 

  21. 21 A.S. Reddy, R.K. Pradhan, and S. Chandra: Int. J. Miner. Process., 2006, vol. 79, pp. 98–105.

    Article  Google Scholar 

  22. 22 L. Kriskova, Y. Pontikes, L. Pandelaers, Ö. Cizer, P.T. Jones, K. Van Balen, and B. Blanpain: Metall. Mater. Trans. B, 2013, vol. 44, pp. 1173–84.

    Article  Google Scholar 

  23. 23 J.J. Liu, G. Chen, P.C. Yan, B. Blanpain, N. Moelans, and M.X. Guo: J. Cryst. Growth, 2014, vol. 402, pp. 1–8.

    Article  Google Scholar 

  24. 24 I. Sohn and R. Dippenaar: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2083–94.

    Article  Google Scholar 

  25. 25 Y. Kashiwaya, T. Nakauchi, K.S. Pham, S. Akiyama, and K. Ishii: ISIJ Int., 2007, vol. 47, pp. 44–52.

    Article  Google Scholar 

  26. 26 Y.Q. Sun, Z.T. Zhang, L.L. Liu, and X.D. Wang: Energies, 2014, vol. 7, pp. 1673–84.

    Article  Google Scholar 

  27. 27 Y.Q. Sun, H.W. Shen, H. Wang, X.D. Wang, and Z.T. Zhang: Energy, 2014, vol. 76, pp. 761–7.

    Article  Google Scholar 

  28. 28 L.J. Zhou, W.L. Wang, F.J. Ma, J. Li, J. Wei, H. Matsuura, and F. Tsukihashi: Metall. Mater. Trans. B, 2011, vol. 43, pp. 354–62.

    Google Scholar 

  29. 29 Y. Kashiwaya, C.E. Cicutti, A.W. Cramb, and K. Ishii: ISIJ Int., 1998, vol. 38, pp. 348–56.

    Article  Google Scholar 

  30. 30 L.J. Zhou, W.L. Wang, R. Liu, and B.G. Thomas: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2013, vol. 44, pp. 1264–79.

    Article  Google Scholar 

  31. 31 B. Jiang, W. Wang, I. Sohn, J. Wei, L. Zhou, and B. Lu: Metall. Mater. Trans. B., 2014, vol. 45, pp. 1057-67.

    Article  Google Scholar 

  32. 32 J.H. Liu, M. Guo, P.T. Jones, F. Verhaeghe, B. Blanpain, and P. Wollants: J. Eur. Ceram. Soc., 2007, vol. 27, pp. 1961–72.

    Article  Google Scholar 

  33. 33 J. Heulens, B. Blanpain, and N. Moelans: Chem. Geol., 2011, vol. 290, pp. 156–62.

    Article  Google Scholar 

  34. 34 C.W. Bale, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melancon, A.D. Pelton, and S. Petersen: Calphad, 2002, vol. 26, pp. 189–228.

    Article  Google Scholar 

  35. 35 D. Durinck, P.T. Jones, B. Blanpain, P. Wollants, G. Mertens, and J. Elsen: J. Am. Ceram. Soc., 2007, vol. 90, pp. 1177–85.

    Article  Google Scholar 

  36. 36 I. Nishinohara, N. Kase, H. Maruoka, S. Hirai, and H. Eba: ISIJ Int., 2015, vol. 55, pp. 616–22.

    Article  Google Scholar 

  37. 37 E.H. Swanson, H.E., Morris, M.C., Stinchfield, R.P. and Evans: Standard X-Ray Diffraction Powder Patterns, Sec.1, Washington, D.C., 1962, pp. 43.

    Book  Google Scholar 

  38. 38 H. F. W. Taylor: Cement Chemistry, 2nd ed., Thomas Telford Publishing, London, 1997, pp. 24-26.

    Book  Google Scholar 

  39. 39 S. El-Alfi, S. Abd-Aleem, and H. Eldidamony: Indian J. Eng. Mater. Sci., 2001, vol. 8, pp. 292–6.

    Google Scholar 

  40. 40 K. Fukuda, T. Bessho, K. Matsunaga, and H. Yoshida: Cem. Concr. Res., 2004, vol. 34, pp. 1535–40.

    Article  Google Scholar 

  41. 41 D. Turnbull: Contemp. Phys., 1969, vol. 10, pp. 473–88.

    Article  Google Scholar 

  42. 42 S.H. Seok, S.M. Jung, Y.S. Lee, and D.J. Min: ISIJ Int., 2007, vol. 47, pp. 1090–6.

    Article  Google Scholar 

  43. D.R. Uhlmann and P.I.K. Onoratoo: 10th Proc. Lunar Planet. Sci. Conf., 1979, pp. 375–81.

  44. 44 H. Yinnon and D.R. Uhlmann: J. Non. Cryst. Solids, 1981, vol. 44, pp. 37–55.

    Article  Google Scholar 

  45. D.R. Uhlmann, H. Yinnon, and C.Y. Fang: Lunar Planet. Sci. Conf. Proc., 1982, vol. 12B, pp. 281–88.

  46. 46 F.F. Foit, R.L. Hooper, and P.E. Rosenberg: Am. Mineral., 1987, vol. 72, pp. 137–47.

    Google Scholar 

  47. 47 N.L. Bowen, J.F. Schairer, and E. Posnjak: Am. J. Sci., 1933, vol. 26, pp. 193–284.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agency for Innovation by Science and Technology of Belgium (IWT Grant No. 140514) and the China Scholarship Council (CSC, No. 201306080002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunwei Liu.

Additional information

Manuscript submitted May 14, 2018.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Huang, S., Blanpain, B. et al. Effect of Al2O3 Addition on Mineralogical Modification and Crystallization Kinetics of a High Basicity BOF Steel Slag. Metall Mater Trans B 50, 271–281 (2019). https://doi.org/10.1007/s11663-018-1465-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1465-7

Keywords

Navigation