Skip to main content
Log in

Formation of Titanium Sulfide from Titanium Oxycarbonitride by CS2 Gas

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Previously this group reported that a good quality titanium metal powder can be produced from titanium sulfides by electrochemical OS process. In this study, the sulfurization procedure was examined to synthesize titanium sulfide from titanium oxycarbonitride by CS2 gas. The experiments were carried out in the temperature range of 1173 K to 1523 K (900 °C to 1250 °C) in a tube reactor with continuously flowing argon (Ar) as carrier gas of CS2. The formation of titanium sulfide phases from the commercial TiN, TiC, and TiO powders was studied as the initial step. Then, TiO0.02C0.13N0.85 coming from ilmenite was sulfurized to prepare single phase of titanium sulfide. The products were characterized by X-ray diffraction, and the morphology of the sulfides was rigorously investigated, and the sulfur, oxygen, and carbon contents in the products were analyzed. The process was remarkably dependent on the temperature and time. TiN and TiO0.02C0.13N0.85 powders could be fully converted to the single phase of Ti2.45S4 (Ti2+xS4) at 1473 K (1200 °C) in 3.6 ks. The maximum weight gain of TiN sample was ~ 55.3 pct indicating a full conversion of TiN to Ti2S3 phase. The carbon and oxygen contents in this sulfide prepared from the oxycarbonitride were about 1.8 wt pct C and 1.4 wt pct O, respectively. Therefore, the titanium sulfide could be a promising feedstock for the production of commercial grade titanium powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H. Okamoto: Desk Handbook: Phase Diagrams for Binary Alloys, ASM International, Materials Park, OH, 2000, p.742

    Google Scholar 

  2. B. Predel: S-Ti (Sulfur-Titanium), Landolt-Börnstein—Group IV Physical Chemistry 5 J (Pu-Re – Zn-Zr), O. Madelung, ed., Springer, Berlin, 1998, pp. 1–4.

  3. L.E. Conroy and K.C. Park: Inorg. Chem., 1968, vol. 7, pp. 459–463.

    Article  Google Scholar 

  4. M. Ohta, S. Satoh, T. Kuzuya, S. Hirai, M. Kunii and A. Yamamoto: Acta Mater., 2012, vol. 60, pp. 7232-7240.

    Article  Google Scholar 

  5. T. Umebayashi, T. Yamaki, H. Itoh and K. Asai: Appl. Phys. Lett., 2002, vol. 81, pp. 454-456.

    Article  Google Scholar 

  6. A.L. Let, D.E. Mainwaring, C. Rix and P. Murugaraj: J. Non-Cryst. Solids, 2008, vol. 354, pp. 1801-1807.

    Article  Google Scholar 

  7. N. Suzuki, M. Tanaka, H. Noguchi, S. Natsui, T. Kikuchi and R.O. Suzuki: Mater. Trans., 2017, vol. 58, pp. 367-370.

    Article  Google Scholar 

  8. W. Kroll: Trans. Electrochem. Soc., 1940, vol. 78, pp. 35-47.

    Article  Google Scholar 

  9. C. Doblin, A. Chryss and A. Monch: Key Eng. Mater., 2012, vol. 520, pp. 95-100.

    Article  Google Scholar 

  10. T.N. Deura, T. Matsunaga, R.O. Suzuki, K. Ono and M. Wakino: Metal. Mater. Trans. B, 1998, vol. 29B, pp. 1167-1174.

    Article  Google Scholar 

  11. R.O. Suzuki, K. Ono and K. Teranuma: Metal. Mater. Trans. B, 2003, vol. 34B, pp. 287–295.

    Article  Google Scholar 

  12. R.O. Suzuki: J. Phys. Chem. Solids, 2005, vol. 66, pp. 461-465.

    Article  Google Scholar 

  13. Y. Zhang, Z.Z. Fang, Y. Xia, Z. Huang, H. Lefler, T. Zhang, P. Sun, M.L. Free and J. Guo: Chem. Eng. J., 2016, vol. 286, pp. 517-527.

    Article  Google Scholar 

  14. R.O. Suzuki, T. Matsunaga, K. Ono, T.N. Harada and T.N. Deura: Metal. Mater. Trans. B, 1999, vol. 30B, pp. 403-410.

    Article  Google Scholar 

  15. K. Ono and R.O. Suzuki: JOM, 2002, vol. 54, pp. 59-61.

    Article  Google Scholar 

  16. K. Oshima, M. Yokoyama, H. Hinode, M. Wakihara and M. Taniguchi: J. Solid State Chem., 1986, 65, pp. 392-395.

    Article  Google Scholar 

  17. M.S. Whittingham: Chem. Rev., 2004, vol. 104, pp. 4271–4302.

    Article  Google Scholar 

  18. E.J. Frazer and S. Phang: J. Power Sources, 1981, vol. 6, pp. 307-317.

    Article  Google Scholar 

  19. J. Ma, H. Jin, X. Liu, M.E. Fleet, J. Li, X. Cao and S. Feng: Cryst. Growth Des., 2008, vol. 8, pp. 4460–4464.

    Article  Google Scholar 

  20. M.A. Rhamdhani, S. Ahmad, M.I. Pownceby, W.J. Bruckard, and S. Harjanto, Miner. Eng., 2018, vol. 121, pp. 55-65

    Article  Google Scholar 

  21. E. Ahmadi, A. Fauzi, H. Hussin, N. Baharun, K.S. Ariffin and S.A. Rezan: Int. J. Miner. Metall. Mater., 2017, vol. 24, pp. 444-454.

    Article  Google Scholar 

  22. E. Ahmadi, S.A. Rezan, N. Baharun, S. Ramakrishnan, A. Fauzi and G. Zhang: Metal. Mater. Trans. B, 2017, vol. 48B, pp. 2354–2366.

    Article  Google Scholar 

  23. S.A. Rezan, G. Zhang and O. Ostrovski: ISIJ Int., 2012, vol. 52, pp. 363–368.

    Article  Google Scholar 

  24. Q. Wang, J. Song, J. Wu, S. Jiao, J. Hou and H. Zhu: Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 8086-8091.

    Article  Google Scholar 

  25. A. Roine (2002) Outokumpu HSC Chemistry for Windows, Chemical reaction and equilibrium software with extensive thermochemical database. Outokumpu Research Oy, Pori

    Google Scholar 

  26. Y.-R. Luo (2007) Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, pp. 667–687.

    Book  Google Scholar 

  27. M. Onoda, M. Saeki and I. Kawada: Z. Anorg. Allg. Chem., 1979, vol. 457, pp. 62-74.

    Article  Google Scholar 

  28. L.-J. Norrby and H.F. Franzen: J. Solid State Chem., 1970, vol. 2, pp. 36-41.

    Article  Google Scholar 

  29. H. Yuan, J. Zhang, R. Yu and Q. Su: J. Rare Earths, 2009, vol. 27, pp. 308-311.

    Article  Google Scholar 

  30. O. Schevciw and W.B. White: Mater. Res. Bull., 1983, vol. 18, pp. 1059-1068.

    Article  Google Scholar 

  31. NIST X-ray Photoelectron Spectroscopy Database, Version 4.1, National Institute of Standards and Technology, Gaithersburg, 2012, http://srdata.nist.gov/xps/.

  32. E. Ahmadi, S.A. Hamid, H.B. Hussin, S.R. Baharun, K.S.B. Ariffin and M.A. Fauzi: INROADS Int. J. Jaipur Natl Univ., 2016, vol. 5, pp. 11-16.

    Article  Google Scholar 

  33. A. Ryabtsev, B. Friedrich, F. Leokha, S. Ratiev, O. Snizhko, P. Spiess, and S. Radwitz: Proceedings of the 2013 International Symposium on Liquid Metal Processing and Casting, Wiley Inc., New York, 2013, pp. 133–36.

  34. S.K. Sadrnezhaad, E. Ahmadi and M. Malekzadeh: Mater. Sci. Tech., 2009, vol. 25, pp. 699–706.

    Article  Google Scholar 

Download references

Acknowledgments

The financial supports from Grant-in-Aid for Scientific Research (B) Number 17H03434, the Center for Engineering Education Development (CEED) of Hokkaido University, Japan Student Services Organization (JASSO) Scholarship and Universiti Sains Malaysia (USM) Fellowship (APEX1002/JHEA/ATSG4001) are gratefully acknowledged. Titanium oxycarbonitride synthesis was made possible by support from USM through the Research University Individual (RUI) Grant (No. 1001/PBAHAN/814273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke O. Suzuki.

Additional information

Manuscript submitted October 10, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, E., Yashima, Y., Suzuki, R.O. et al. Formation of Titanium Sulfide from Titanium Oxycarbonitride by CS2 Gas. Metall Mater Trans B 49, 1808–1821 (2018). https://doi.org/10.1007/s11663-018-1278-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1278-8

Keywords

Navigation