Skip to main content
Log in

Effects of Static Recrystallization and Precipitation on Mechanical Properties of 00Cr12 Ferritic Stainless Steel

  • Topical Collection: Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The 00Cr12 ferritic stainless steel samples were isothermally held at different temperatures in the range of 700 °C to 1000 °C to investigate the effect of static recrystallization and precipitation on mechanical properties, such as microhardness, tensile strength, and yield strength. The results show that the formation of the fine recrystallized grain, as well as precipitation, coarsening, and dissolution of the second-phase particles, influences the mechanical properties remarkably. The fine recrystallized grain can provide a positive grain boundary-strengthening effect in the sample under a relatively high holding temperature. Coarsening and dissolution of M23C6 result in partial depletion of precipitate hardening. In contrast, the size and number density of MX particles are almost constant, regardless of the holding temperature; therefore, it can provide a better precipitation-hardening effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lu Q, van der Zwaag S, Xu W: J. Mater. Sci. Technol., 2017, vol. 33, pp. 1577-81.

    Article  Google Scholar 

  2. Cashell K, Baddoo N: Thin-Walled Structures, 2014, vol. 83, pp. 169-81.

    Article  Google Scholar 

  3. Shaigan N, Qu W, Ivey DG, Chen W: J. Power Sources, 2010, vol. 195, pp. 1529-42.

    Article  Google Scholar 

  4. Moteshakker A, Danaee I: J. Mater. Sci. Technol., 2016, vol. 32, pp. 282-90.

    Article  Google Scholar 

  5. Fujita N, Ohmura K, Yamamoto A: Mater. Sci. Eng. A, 2003, vol. 351, pp. 272-81.

    Article  Google Scholar 

  6. Wang L-x, Song C-j, Sun F-m, Li L-j, Zhai Q-j: Mater. Des., 2009, vol. 30, pp. 49-56.

    Article  Google Scholar 

  7. Hu X, Du Y, Yan D, Rong L: J. Mater. Sci. Technol., 2017, https://doi.org/10.1016/j.jmst.2017.05.007.

    Google Scholar 

  8. Ma L, Hu S, Shen J, Han J, Zhu Z: J. Mater. Sci. Technol., 2016, vol. 32, pp. 552-60.

    Article  Google Scholar 

  9. Zheng H, Ye X, Jiang L, Wang B, Liu Z, Wang G: Mater. Des., 2010, vol. 31, pp. 4836-41.

    Article  Google Scholar 

  10. Taban E, Deleu E, Dhooge A, Kaluc E: Mater. Des., 2009, vol. 30, pp. 1193-200.

    Article  Google Scholar 

  11. Jahja A, Effendi N, Dani M: Atom Indonesia, 2012, vol. 33, pp. 79-95.

    Article  Google Scholar 

  12. Yazawa Y, Ozaki Y, Kato Y, Furukimi O: JSAE review, 2003, vol. 24, pp. 483-8.

    Article  Google Scholar 

  13. Park S, Kim K, Lee Y, Park C: ISIJ Int., 2002, vol. 42, pp. 100-5.

    Article  Google Scholar 

  14. Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ, Jensen DJ, Kassner ME, et al: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219-74.

    Article  Google Scholar 

  15. Ebrahimi GR, Keshmiri H, Maldad AR, Momeni A: J. Mater. Sci. Technol., 2012, vol. 28, pp. 467-73.

    Article  Google Scholar 

  16. Huh MY, Engler O: Mater. Sci. Eng. A, 2001, vol. 308, pp. 74-87.

    Article  Google Scholar 

  17. Lo KH, Shek CH, Lai JKL: Mater. Sci. Eng. R, 2009, vol. 65, pp. 39-104.

    Article  Google Scholar 

  18. Zhou Y, Liu C, Liu Y, Guo Q, Li H: Int. J. Miner. Metall. Mater., 2016, vol. 23, pp. 283-93.

    Article  Google Scholar 

  19. Sim GM, Ahn JC, Hong SC, Lee KJ, Lee KS: Mater. Sci. Eng. A, 2005, vol. 396, pp. 159-65.

    Article  Google Scholar 

  20. Liu F, Sommer F, Bos C, Mittemeijer EJ: Int. Mater. Rev., 2007, vol. 52, pp. 193-212.

    Article  Google Scholar 

  21. Shan Y, Luo X, Hu X, Liu S: J. Mater. Sci. Technol., 2011, vol. 27, pp. 352-8.

    Article  Google Scholar 

  22. Ennis P, Czyrska-Filemonowicz A: Sadhana, 2003, vol. 28, pp. 709-30.

    Article  Google Scholar 

  23. Abe F: Sci. Technol. Adv. Mater., 2008, vol. 9, 013002.

    Article  Google Scholar 

  24. Maalekian M, Radis R, Militzer M, Moreau A, Poole WJ: Acta Mater., 2012, vol. 60, pp. 1015-26.

    Article  Google Scholar 

  25. Krauss G: Mater. Sci. Eng. A, 1999, vol. 273, pp. 40-57.

    Article  Google Scholar 

  26. Norström L-Å: Metal Sci., 1976, vol. 10, pp. 429-36.

    Article  Google Scholar 

  27. Dingley DJ, McLean D: Acta Metall., 1967, vol. 15, pp. 885-901.

    Article  Google Scholar 

  28. Maruyama K, Sawada K, Koike J-i: ISIJ Int. (Japan), 2001, vol. 41, pp. 641-53.

    Article  Google Scholar 

  29. A.A. Gorni: Steel Forming and Heat Treating Handbook, São Vicente, Brazil, 2011.

Download references

Acknowledgments

The authors are grateful to the China National Funds for Distinguished Young Scientists (Grant No. 51325401), the National Magnetic Confinement Fusion Energy Research Project (Grant No. 2015GB119001), and the National Natural Science Foundation of China (Grant Nos. 51501126, 51474156 and U1660201) for grant and financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenxi Liu or Huijun Li.

Additional information

Manuscript submitted September 5, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Liu, C., Yue, T. et al. Effects of Static Recrystallization and Precipitation on Mechanical Properties of 00Cr12 Ferritic Stainless Steel. Metall Mater Trans B 49, 1560–1567 (2018). https://doi.org/10.1007/s11663-018-1273-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1273-0

Keywords

Navigation