Skip to main content
Log in

Kinetic Modeling of the Reaction Rate for Quartz and Carbon Pellet

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Kinetic modeling of quartz and carbon pellet at temperatures of 1898 K, 1923 K, and 1948 K (1625 °C, 1650 °C, and 1675 °C) was investigated in this study. The carbon materials used were charcoal, coke, coal, and preheated coal. The overall SiC producing reaction can be described by the reaction SiO2 + 3C = SiC + 2CO. In the SiC-producing step, the reaction rate of quartz and carbon pellet can be expressed as

$$ \frac{{d{\text{ pct}}}}{dt}\; = \;\left( {1\; - \;0.40\; \times \;X_{\text{fix - C}}^{ - 0.86} \; \times \;F_{\text{C}} \; \times \;{\text{pct}}} \right)\; \times \;A\; \times \;\exp \left( { - \frac{E}{{{\text{R}}T}}} \right) $$

The carbon factor FC was used to describe the influence of different carbon materials that effect the gas–solid interface reaction. For charcoal, coke, coal, and preheated coal, the FC values were 0.83, 0.80, 0.94, and 0.83, respectively. The pre-exponential factor A values for the preceding four carbon materials were 1.06 × 1016 min−1, 4.21 × 1015 min−1, 3.85 × 109 min−1, and 1.00 × 1025 min−1, respectively. The activation energies E for the SiC-producing step were 570, 563, 336, and 913 kJ/mole for charcoal, coke, coal, and preheated coal pellets, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. Li and M. Tangstad: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 853–69.

    Article  Google Scholar 

  2. A.W. Weimer, K.J. Nilsen, G.A. Cochran, and R.P. Roach: AIChE J., 1993, vol. 39, pp. 493–503.

    Article  Google Scholar 

  3. F. Li and M. Tangstad: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 0000–00.

    Google Scholar 

  4. H. Friedman: J. Polymer Sci. Polymer Symp., 1964, vol. 6, pp. 183–95.

    Article  Google Scholar 

  5. V. Andersen: Reaction Mechanism and Kinetics of the High Temperature Reactions in the Silicon Process, Norwegian University of Science and Technology, Trondheim, Norway, 2010.

    Google Scholar 

  6. M.J. Starink. Thermochimica Acta, 2003, vol. 404, pp. 163–76.

    Article  Google Scholar 

  7. J.H. Flynn: J. Therm. Anal., 1983, vol. 27, pp. 95–102.

    Article  Google Scholar 

  8. M.E. Brown, M. Maciejewski, S. Vyazovkin, R. Nomen, J. Sempere, A. Burnhan, J. Opfermann, R. Strey, H.L. Anderson, A. Kemmler, R. Keuleers, J. Janssens, H.O. Desseyn, C.R. Li, T.B. Tang, B. Roduit, J. Malek, and T. Mitsuhashi: Thermochim. Acta, 2000, vol. 355, pp. 125–43.

    Article  Google Scholar 

  9. A. Pratap, T. Lilly Shanker Rao, K.N. Lad, and Heena D. Dhurandhar: J. Therm. Anal. Calorim. 2007, 89, 399–405.

    Article  Google Scholar 

  10. S. Vyazovkin and C.A. Wight: Thermochim. Acta, 1999, vol. 53. pp. 340–41.

    Google Scholar 

  11. S. Vyazovkin and C.A. Wight: J. Phys. Chem. A, 1997, vol. 101, pp. 8279–84.

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge Elkem and the Research Council of Norway for the financial support by the project “235123 Silicon Production with use of Natural Gas.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Li.

Additional information

Manuscript submitted March 15, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Tangstad, M. Kinetic Modeling of the Reaction Rate for Quartz and Carbon Pellet. Metall Mater Trans B 49, 839–845 (2018). https://doi.org/10.1007/s11663-017-1141-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1141-3

Keywords

Navigation