Skip to main content
Log in

Reduction Enhancement Mechanisms of a Low-Grade Iron Ore–Coal Composite by NaCl

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The reduction behavior of a low iron grade with high SiO2 content ore–coal composite was investigated in the temperature range of 1143 K to 1263 K (870 °C to 990 °C). Sodium chloride was chosen as an additive to promote this reduction process. The effect of the sodium chloride addition and its mechanism was also investigated. Results showed that the added sodium chloride could enhance the reduction of wustite to iron due to the decrease of fayalite, and a higher metallization ratio of reduced sample was obtained. Thermogravimetric–differential scanning calorimeter analysis showed that sodium chloride could greatly facilitate the gasification process of coal and, thus, provide sufficient carbon monoxide to the reduction process of iron oxides. Meanwhile, sodium chloride promoted the reduction process of iron ore pellets directly as the coal gasification effect was excluded. Microstructures of reduced sample revealed that sodium chloride broke the structure of ore and enhanced the growth of newly formed iron particles. As the ore–coal composite with mol (C/Fe = 1.4) and 3 mass pct sodium chloride addition was roasted at 1233 K (960 °C) for 55 minutes, a reduced sample with metallization ration of 74.45 pct could be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. T.X. Wang, Y.M. Zhu, and X.H. Gui: J. Cent. South Univ., 2016, vol. 23, pp. 1058–65.

    Article  Google Scholar 

  2. D.C. Fan, N. Wen, J.Y. Wang, and K. Wang: J. Wuhan Univ. Technol., 2017, vol. 32, pp. 508–16.

    Article  Google Scholar 

  3. S. Rachappa, Y. Prakash, R Amit: Procedia Earth Planet. Sci., 2015, vol. 11, pp. 195–97.

    Article  Google Scholar 

  4. A.S.S. Ahmed, M.M. Eltahir, and M.A. Abdel-Zaher: Int. J. Miner. Process., 2013, vol. 122, pp. 59–62.

    Article  Google Scholar 

  5. B. Das, B.K. Mishra, S. Prakash, S.K. Das, P.S.R. Reddy, and S. I. Angadi: Int. J. Miner. Metall. Mater., 2010, vol. 17, pp. 657–82.

    Article  Google Scholar 

  6. X.F. Tang: Mod. Ming., 2014, vol. 3, pp. 14–19 (in Chinese).

    Google Scholar 

  7. R.Z. Abd Rashid, S. Mohd, A. Hamzah, H.Y. Mohd, A.A. Nurul, and P. H. Tomohiro: Renew. Energy, 2014, vol. 63, pp. 617–23.

    Article  Google Scholar 

  8. W. Yu, T.C. Sun, and T.Y. Hu: ISIJ Int., 2015, vol. 55, pp. 329–31.

    Article  Google Scholar 

  9. K.Q. Li, W. Ni, and M. Zhu: J. Iron Steel Res. Int., 2011, vol. 11, pp. 9–13.

    Article  Google Scholar 

  10. J.Y. Fu, T. Jiang, and D.Q. Zhu: Sintering and Pelletizing, Central South University Press, Changsha, 1996, pp. 127–29 (in Chinese).

  11. P. Semberg, A. Rutqvist, C. Andersson, and B. Bjorkman: ISIJ Int., 2011, vol. 51, pp. 173–80.

    Article  Google Scholar 

  12. A.A. El-Geassy, M.I. Nasr, A.A. Omar, and E.A. Mousa: ISIJ Int., 2008, vol. 48, pp. 1359–67.

    Article  Google Scholar 

  13. W.H. Kim, Y.S. Lee, I.K. Suh, and D.J. Min: ISIJ Int., 2012, vol. 52, pp. 1463–71.

    Article  Google Scholar 

  14. Y. Man and J.X. Feng: Powder Technol., 2016, vol. 301, pp. 1213–17.

    Article  Google Scholar 

  15. D.B. Guo, Y.B. Li, B.H. Cui, Z.H. Chen, S.P. Luo, B. Xiao, H.P. Zhu, and M. Hu: Chemi. Eng. J., 2017, vol. 327, pp. 822–30.

    Article  Google Scholar 

  16. N.A. El-Hussiny and M.E.H. Shalabi: Powder Technol., 2011, vol. 205, pp. 217–23.

    Article  Google Scholar 

  17. Y. Mochizuki, M. Nishio, N. Tsubouchi, and T. Akiyama: Fuel Process. Technol., 2016, vol. 142, pp. 278–95.

    Article  Google Scholar 

  18. Q. Wang: Technology of Composite Pellets, Metall. Ind., Beijing, 2006, pp. 24–98 (in Chinese).

  19. M. Kawanri, A. Matsumoto, R. Ashida, and K. Miura: ISIJ Int., 2011, vol. 51, pp. 1227–33.

    Article  Google Scholar 

  20. Z.C. Huang, L.M. Wen, R.H. Zhong, and T. Jiang: Miner. Metall. Mater. Soc., 2016, pp. 461–68.

  21. D.Q. Zhu, T.J. Chun, J.Pan, and Z. He: J. Iron Steel Res. Int., 2012, vol. 19, pp. 1–5.

    Article  Google Scholar 

  22. G. Wang, Q.G. Xue, and J.S. Wang: Trans. Nonferrous Met. Soc. China, 2016, vol. 25, pp. 282–93.

    Article  Google Scholar 

  23. S. Coetzee, H.W.J.P. Neomagus, J.R. Bunt, and R.C. Everson: Fuel Process. Technol., 2013, vol. 114, pp. 75–80.

    Article  Google Scholar 

  24. Z.W.K. Zhu, W.L. Lin, and W.G. Lin: Fuel Process. Technol., 2008, vol. 89, pp. 890–96.

    Article  Google Scholar 

  25. L.L. Zhou and F. H. Zeng: Adv. Mater. Res., 2010, vol. 97, pp. 465–70.

    Article  Google Scholar 

  26. S.Z. El-Tawil, I.M. Mosri, and A. Yehiu: Can. Metall. Q., 1996, vol. 35, pp. 31–35.

    Article  Google Scholar 

  27. Y. Man, J.X. Feng, Q. Ge, Y.M. Chen, and J. Z. Zhou: Powder Technol., 2014, vol. 256, pp. 361–66.

    Article  Google Scholar 

  28. H. Park and V. Sahajwalla: ISIJ Int., 2014, vol. 54, pp. 49–55.

    Article  Google Scholar 

  29. K. Sinha, T. Sharma, and D.D. Haladar: Int. Eng. Adv. Technol., 2014, vol. 3, pp. 30–33.

    Google Scholar 

  30. N.S. Srinivasan and A.K. Lahiri: Metall. Trans. B, 1977, vol. 8B, pp. 175–78.

    Article  Google Scholar 

  31. D.S. Chen, B. Song, L.N. Wang, T. Qi, Y. Wang, and W. J. Wang: Miner. Eng., 2011, vol. 24, pp. 864–69.

    Article  Google Scholar 

Download references

Acknowledgment

The authors express appreciation to the National Natural Science Foundation of China (Grant No. 51504230) for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingyun Yi.

Additional information

Manuscript submitted April 10, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Zhong, R., Yi, L. et al. Reduction Enhancement Mechanisms of a Low-Grade Iron Ore–Coal Composite by NaCl. Metall Mater Trans B 49, 411–422 (2018). https://doi.org/10.1007/s11663-017-1116-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1116-4

Keywords

Navigation