Skip to main content
Log in

Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The recently published viscosity data of heterogeneous silicate melts with well-documented structure and experimental conditions are critically re-analyzed and tabulated. By using these data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate is proposed on the basis of the power-law equation. This model allows calculating the viscosity of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large error in viscosity measurement of the completely liquid silicate melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yan Bottinga and Daniel F Weill, American Journal of Science 1972, vol. 272, pp. 438-475.

    Article  Google Scholar 

  2. Daniele Giordano, James K. Russell and Donald B. Dingwell, Earth and Planetary Science Letters 2008, vol. 271, pp. 123-134.

    Article  Google Scholar 

  3. YS Lee, DJ Min, SM Jung, SH Yi, ISIJ International 2004, vol. 44, pp. 1283-1290.

    Article  Google Scholar 

  4. R Roscoe, British Journal of Applied Physics 1952, vol. 3, pp. 267-269.

    Article  Google Scholar 

  5. Alex Kondratiev and Evgueni Jak, Metallurgical and Materials Transactions B 2001, vol. 32, pp. 1027-1032.

    Article  Google Scholar 

  6. Steven Wright, Ling Zhang, Shouyi Sun and Sharif Jahanshahi, Journal of Non-crystalline solids 2001, vol. 282, pp. 15-23.

    Article  Google Scholar 

  7. S Wright, L Zhang, S Sun and S Jahanshahi, Metallurgical and Materials Transactions B 2000, vol. 31, pp. 97-104.

    Article  Google Scholar 

  8. L Wu, M Ek, M Song and D Sichen, Steel Research International 2011, vol. 82, pp. 388-397.

    Article  Google Scholar 

  9. J Xu, L Su, C Dong, J Zhang and C Yao, Journal of Iron and Steel Research, International 2015, vol. 22, pp. 1091-1097.

    Article  Google Scholar 

  10. Y-L Zhen, G-H Zhang and K-C Chou, Metallurgical and Materials Transactions B 2015, vol. 46, pp. 155-161.

    Article  Google Scholar 

  11. H. M. Mader, E. W. Llewellin and S. P. Mueller, Journal of Volcanology and Geothermal Research 2013, vol. 257, pp. 135-158.

    Article  Google Scholar 

  12. H Ishibashi and H Sato, Journal of Volcanology and Geothermal Research 2007, vol. 160, pp. 223-238.

    Article  Google Scholar 

  13. H Ishibashi, Journal of Volcanology and Geothermal Research 2009, vol. 181, pp. 78-88.

    Article  Google Scholar 

  14. A Vona, C Romano, DB Dingwell and D Giordano, Geochimica et Cosmochimica Acta 2011, vol. 75, pp. 3214-3236.

    Article  Google Scholar 

  15. MO Chevrel, C Cimarelli, L deBiasi, JB Hanson, Y Lavallée, F Arzilli and DB Dingwell, Geochemistry, Geophysics, Geosystems 2015, vol. 16, pp. 870-889.

    Article  Google Scholar 

  16. S. Campagnola, A. Vona, C. Romano and G. Giordano, Chemical Geology 2016, vol. 424, pp. 12-29.

    Article  Google Scholar 

  17. A.E.O.J. Delesse: Procédé mécanique pour déterminer la composition des roches, F. Savy (1866).

  18. D Giordano and DB Dingwell, Earth and Planetary Science Letters 2003, vol. 208, pp. 337-349.

    Article  Google Scholar 

  19. HR Shaw, American Journal of Science 1972, vol. 272, pp. 870-893.

    Article  Google Scholar 

  20. E Behzadfar, MH Abdolrasouli, F Sharif and H Nazockdast, Brazilian Journal of Chemical Engineering 2009, vol. 26, pp. 713-721.

    Article  Google Scholar 

  21. IR Rutgers, Rheologica Acta 1962, vol. 2, pp. 305-348.

    Article  Google Scholar 

  22. VV Jinescu, International Chemical Engineering 1974, vol. 14, pp. 397-420.

    Google Scholar 

  23. DJ Jeffrey and A Acrivos, AIChE Journal 1976, vol. 22, pp. 417-432.

    Article  Google Scholar 

  24. JW Goodwin, Colloid science 1975, vol. 2, pp. 246-93.

    Article  Google Scholar 

  25. A Einstein, Annals of Physics 1906, vol. 19, pp. 289-306.

    Article  Google Scholar 

  26. DG Thomas, Journal of Colloid Science 1965, vol. 20, pp. 267-277.

    Article  Google Scholar 

  27. V Vand, The Journal of Physical Chemistry 1948, vol. 52, pp. 277-299.

    Article  Google Scholar 

  28. AA Arzi, Tectonophysics 1978, vol. 44, pp. 173-184.

    Article  Google Scholar 

  29. JL Vigneresse, P Barbey and M Cuney, Journal of Petrology 1996, vol. 37, pp. 1579-1600.

    Article  Google Scholar 

  30. IM Krieger and TJ Dougherty, Transactions of The Society of Rheology 1959, vol. 3, pp. 137-152.

    Article  Google Scholar 

  31. CR Wildemuth and MC Williams, Rheologica Acta 1984, vol. 23, pp. 627-635.

    Article  Google Scholar 

  32. H De Bruijn, Recueil des Travaux Chimiques des Pays-Bas 1942, vol. 61, pp. 863-874.

    Article  Google Scholar 

  33. H Pinkerton and RJ Stevenson, Journal of Volcanology and Geothermal Research 1992, vol. 53, pp. 47-66.

    Article  Google Scholar 

  34. H Pinkerton and G Norton, Journal of Volcanology and Geothermal Research 1995, vol. 68, pp. 307-323.

    Article  Google Scholar 

  35. BD Marsh, Contributions to Mineralogy and Petrology 1981, vol. 78, pp. 85-98.

    Article  Google Scholar 

  36. H Sato, Journal of Volcanology and Geothermal Research 1995, vol. 66, pp. 101-113.

    Article  Google Scholar 

  37. GD Scott and DM Kilgour, Journal of Physics D: Applied Physics 1969, vol. 2, p. 863.

    Article  Google Scholar 

  38. T Kitano, T Kataoka and T Shirota, Rheologica Acta 1981, vol. 20, pp. 207-209.

    Article  Google Scholar 

  39. KE Evans and AG Gibson, Composites Science and Technology 1986, vol. 25, pp. 149-162.

    Article  Google Scholar 

  40. J.G. Parkhouse and A. Kelly: in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 1995, pp 737–46.

  41. O. Rahli, L. Tadrist, and R. Blanc: Comptes Rendus de l’Académie des Sciences-Series IIB-Mechanics-Physics-Astronomy 1999, vol. 327, pp. 725–29.

  42. W Pabst, E Gregorová and C Berthold, Journal of the European Ceramic Society 2006, vol. 26, pp. 149-160.

    Article  Google Scholar 

  43. S. Mueller, E.W. Llewellin, and H.M. Mader: in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 2009, pp 309–26.

  44. S Mueller, EW Llewellin and HM Mader, Geophysical Research Letters 2011, vol. 38, p. L13316.

    Google Scholar 

  45. K.C. Mills, L. Champman, A.B. Fox, and S. Sridhar: Stockholm, Sweden–Helsinki, Finland, 2000, pp. 12–15.

  46. SR Williams and AP Philipse, Physical Review E 2003, vol. 67, p. 051301.

    Article  Google Scholar 

  47. L Onsager, Physical Review 1932, vol. 40, p. 1028.

    Google Scholar 

  48. W Kuhn and H Kuhn, Helvetica Chimica Acta 1945, vol. 28, pp. 97-127.

    Article  Google Scholar 

  49. DH Johnson, F Vahedifard, B Jelinek and JF Peters, Journal of Rheology 2017, vol. 61, pp. 265-277.

    Article  Google Scholar 

  50. J.R. Van Wazer: Viscosity and Flow Measurement: A Laboratory Handbook of Rheology, Interscience Publishers, New York, 1963.

  51. FJ Ryerson, HC Weed and AJ Piwinskii, Journal of Geophysical Research: Solid Earth 1988, vol. 93, pp. 3421-3436.

    Article  Google Scholar 

  52. RM German, Metallurgical Transactions A 1985, vol. 16, pp. 1247-1252.

    Article  Google Scholar 

  53. YS Ko and AS Lodge, Rheologica Acta 1991, vol. 30, pp. 357-368.

    Article  Google Scholar 

  54. M. Settle: in Lunar and Planetary Science Conference, 1979, pp 1107–09.

  55. C. Cimarelli, A. Costa, S. Mueller and H. M. Mader, Geochemistry, Geophysics, Geosystems 2011, vol. 12, p. Q07024.

    Article  Google Scholar 

  56. M Manga, Journal of Volcanology and Geothermal Research 1998, vol. 86, pp. 107-115.

    Article  Google Scholar 

  57. G.B. Jeffery: in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 1922, pp 161–79.

  58. H Sato, Journal of Mineralogical and Petrological Sciences 2005, vol. 100, pp. 133-142.

    Article  Google Scholar 

  59. H.L. Goldsmith, S.G. Mason, and F.R. Eirich: New York, 1967, p. 85.

Download references

Acknowledgment

This work was supported by the IWT (Belgium) [Grant 140514, 2015]. Zhuangzhuang Liu acknowledges the support of the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuangzhuang Liu.

Additional information

Manuscript submitted May 11, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Blanpain, B. & Guo, M. Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model. Metall Mater Trans B 48, 3027–3037 (2017). https://doi.org/10.1007/s11663-017-1075-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1075-9

Keywords

Navigation