Skip to main content

Advertisement

Log in

Analysis of the Hydrogen Reduction Rate of Magnetite Concentrate Particles in a Drop Tube Reactor Through CFD Modeling

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A computational fluid dynamics (CFD) approach, coupled with experimental results, was developed to accurately evaluate the kinetic parameters of iron oxide particle reduction. Hydrogen reduction of magnetite concentrate particles was used as a sample case. A detailed evaluation of the particle residence time and temperature profile inside the reactor is presented. This approach eliminates the errors associated with assumptions like constant particle temperature and velocity while the particles travel down a drop tube reactor. The gas phase was treated as a continuum in the Eulerian frame of reference, and the particles are tracked using a Lagrangian approach in which the trajectory and velocity are determined by integrating the equation of particle motion. In addition, a heat balance on the particle that relates the particle temperature to convection and radiation was also applied. An iterative algorithm that numerically solves the governing coupled ordinary differential equations was developed to determine the pre-exponential factor and activation energy that best fit the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A p :

Surface area of particle (m2)

d p :

Geometric mean particle diameter (m)

D i,m :

Mass diffusion coefficient for species i in the mixture (m2 s−1)

h g :

Sensible heat of the gas mixture (J kg−1)

k :

Turbulent kinetic energy (J kg−1)

k eff :

Effective thermal conductivity (W m−1 K−1) = k g + k t

k g :

Gas thermal conductivity (W m−1 K−1)

m p :

Particle mass (kg)

p :

Pressure (pa)

T :

Gas phase temperature (K)

T iso :

Isothermal zone temperature (K)

T p :

Particle temperature (K)

T s :

Wall temperature (K)

u i :

Gas phase velocity components (m s−1)

u p :

Particle velocity (m s−1)

Y i :

Mass fraction of species i

Z :

Axial distance from the tip of injection tube (m) (See Figure 4(a))

\( \varepsilon \) :

Turbulence dissipation rate (J kg s−1)

\( \varepsilon_{\text{p}} \) :

Particle emissivity

\( \mu \) :

Gas phase viscosity (N m s−2)

\( \rho \) :

Gas phase density (kg m−3)

\( \rho_{\text{p}} \) :

Particle density (kg m−3)

\( \omega_{\text{o}}^{ \circ } \) :

The initial mass fraction of iron-bonded oxygen in magnetite

References

  1. 1. M. E. Choi and H. Y. Sohn: Ironmaking Steelmaking, 2010, vol. 37 (2), pp. 81-88.

    Article  Google Scholar 

  2. 2. H. K. Pinegar, M. S. Moats and H. Y. Sohn: Steel Res. Int., 2011, vol. 82 (8), pp. 951-63.

    Article  Google Scholar 

  3. H. Wang: PhD. Dissertation, University of Utah, Salt Lake City, Utah, 2011.

  4. M. Y. Mohassab Ahmed: PhD. Dissertation, University of Utah, Salt Lake City, Utah, 2013.

  5. M. Olivas-Martinez: PhD. Dissertation, University of Utah, Salt Lake City, Utah, 2013.

  6. 6. H. Wang and H. Y. Sohn: Metall. Mater. Trans. B, 2013, vol. 44 (1), pp. 133-45.

    Article  Google Scholar 

  7. M. Yousef Mohassab-Ahmed and H.Y. Sohn: Ironmak. Steelmak., 2014, vol. 41, pp. 665–75.

    Article  Google Scholar 

  8. 8. F. Chen, Y. Mohassab, T. Jiang and H. Y. Sohn: Metall. Mater. Trans. B, 2015, vol. 46 (3), pp. 1133-45.

    Article  Google Scholar 

  9. 9. F. Chen, Y. Mohassab, S. Zhang and H.Y. Sohn: Metall. Mater. Trans. B, 2015, vol. 46 (4), pp. 1716-28.

    Article  Google Scholar 

  10. 10. A. Bonalde, A. Henriquez and M. Manrique: ISIJ Int., 2005, vol. 45 (9), pp. 1255-60.

    Article  Google Scholar 

  11. 11. A. Pineau, N. Kanari and I. Gaballah: Thermochim. Acta, 2006, vol. 447 (1), pp. 89-100.

    Article  Google Scholar 

  12. 12. A. Pineau, N. Kanari and I. Gaballah: Thermochim. Acta, 2007, vol. 456 (2), pp. 75-88.

    Article  Google Scholar 

  13. 13. Y. Qu, Y. Yang, Z. Zou, C. Zeilstra, K. Meijer and R. Boom: ISIJ Int., 2015, vol. 55 (5), pp. 952-60.

    Article  Google Scholar 

  14. 14. Z. Lian, B. Eleanor, Q. Yu and C.-Z. Li: Energy Fuels, 2010, vol. 24 (1), pp. 29-37.

    Article  Google Scholar 

  15. 15. R. Khatami, C. Stivers, K. Joshi, Y.A. Levendis and A.F. Sarofim: Combust. Flame, 2012, vol. 159 (3), pp. 1253-71.

    Article  Google Scholar 

  16. M.H.M.R. Avila, R. Raiko, and A. Oksanen: J. IFRF, 2012, Article Number 201201, pp. 1–13

  17. 17. H. Tolvanen and R. Raiko: Fuel, 2014, vol. 124 pp. 190-201.

    Article  Google Scholar 

  18. 18. D. C. D. Alexander L. Brown, M. R. Nimlos and J. W. Daily: Energy Fuels, 2001, vol. 15 (5), pp. 1276-85.

    Article  Google Scholar 

  19. 19. M. Simone, E. Biagini, C. Galletti and L. Tognotti: Fuel, 2009, vol. 88 (10), pp. 1818-27.

    Article  Google Scholar 

  20. 20. J. Lehto: Fuel, 2007, vol. 86 (12–13), pp. 1656-63.

    Article  Google Scholar 

  21. 21. T.-H. Shih, W. W. Liou, A. Shabbir, Z. Yang and J. Zhu: Comput. Fluids, 1995, vol. 24 (3), pp. 227-38.

    Article  Google Scholar 

  22. 22. E. H. Chui and G. D. Raithby: Numer. Heat Tr. B-Fund., 1993, vol. 23 (3), pp. 269-88.

    Article  Google Scholar 

  23. 23. A. Y. Varaksin, Turbulent Particle-Laden Gas Flows, Springer, New York, 2007, pp. 22-23.

    Book  Google Scholar 

  24. M. E. Choi: PhD. Dissertation, University of Utah, Salt Lake City, Utah, 2010.

  25. 25. R. Clift, J. R. GraceM. E. Weber, Bubbles, Drops, and Particles, Academic Press, New York, 1978.

    Google Scholar 

  26. 26. W. E. Ranz and W. R. Marshall: Chem. Eng. Prog., 1952, vol. 48 (4), pp. 173–80.

    Google Scholar 

  27. 27. Y. B. Hahn and H. Y. Sohn: Metall. Mater. Trans. B, 1990, vol. 21 (6), pp. 959-66.

    Article  Google Scholar 

  28. 28. T. L. Bergman, A. S. Lavine, F. P. Incropera, D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 7th Edition, Willey, USA, 2011, pp. 795-96.

    Google Scholar 

  29. 29. H. Y. Sohn: Metall. Mater. Trans. B, 2014, vol. 45 (5), pp. 1600-02.

    Article  Google Scholar 

Download references

Acknowledgments

Deep appreciations are attributed to Dr. Baoqiang Xu, Dr. Shenqing Zhang, Dr. Kai Xie, and Feng Chen in this laboratory for their helpful advice in building the model and contribution to the experimental work for the study. The support and resources from the Center for High Performance Computing at the University of Utah are gratefully acknowledged. The authors acknowledge the financial support from the U.S. Department of Energy under Award Number DE-EE0005751 with cost share by the American Iron and Steel Institute (AISI) and the University of Utah.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Y. Sohn.

Additional information

Manuscript submitted on October 29, 2015.

Appendix

Appendix

See Table A1.

Table A1 Complete Experimental Data (Excess Hydrogen >500 pct)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, D., Mohassab, Y., Elzohiery, M. et al. Analysis of the Hydrogen Reduction Rate of Magnetite Concentrate Particles in a Drop Tube Reactor Through CFD Modeling. Metall Mater Trans B 47, 1669–1680 (2016). https://doi.org/10.1007/s11663-016-0603-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0603-3

Keywords

Navigation