Skip to main content
Log in

Mechanisms and Kinetics of Boron Removal from Silicon by Humidified Hydrogen

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The removal of boron from silicon by top blowing of humidified hydrogen has been studied in the present work through experimental work, thermodynamic calculations, computational fluid dynamic modeling, and quantum chemistry calculations. The effect of process parameters; temperature, lance diameter, lance distance from the melt surface, gas flow rate, and crucible material on the kinetics of boron removal were studied. It has been shown that the rate of boron removal is decreased with increasing temperature due to the competitive reactions between silicon and oxygen as well as boron and oxygen, which can be confirmed with the increases of p SiO/p HBO in the system. The rate of boron removal is increased with increasing the gas flow rate due mainly to the better supply and transport of the gas over the melt surface, as confirmed by the CFD modeling. Moreover, the rate of boron removal in alumina crucible is the highest followed by that in quartz and graphite crucibles, respectively. Faster B removal in quartz crucible than that in graphite crucible can be attributed to more oxygen dissolves in silicon melts. The fastest boron removal in alumina crucible is attributed to the additional boron gasification through aluminum borate (AlBO2) formation on the melt surface. Thermodynamic properties of the AlBO2 species have thus been revised by quantum chemistry calculations, which were more accurate to describe the formation of gaseous AlBO2 than those in the JANAF Thermochemical Tables. The main chemical reactions for boron gasification from silicon melts are proposed as

$$ {\text{In graphite, quartz and alumina crucible}}:\quad \underline{\text{B}} + \underline{\text{H}} + \underline{\text{O}} = {\text{ HBO}}\left( {\text{g}} \right) $$
$$ {\text{In alumina crucible}}:\underline{\text{Al}} + \underline{\text{B}} + \underline{\text{O}} = {\text{ AlBO}}_{2} \left( {\text{g}} \right) $$

Based on the obtained results, it has been proposed that boron removal from silicon melt by humidified hydrogen is controlled both by the chemical reaction for boron gasification and mass transport in the adjacent gas phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. J. Safarian, G. Tranell, M. Tangstad: Energy Procedia, Vol. 20 (2012), pp. 88-97.

    Article  Google Scholar 

  2. S. Tsao and S.S. Lian: Mater. Sci. Forum, 2005, vols. 475–479,pp. 2595–98.

    Article  Google Scholar 

  3. K. Suzuki, K. Sakaguchi, T. Nakagiri, and N. Sano: J. Jpn. Inst. Met., 1990, vol. 54, pp. 161–67.

    Google Scholar 

  4. E. Nordstrand and M. Tangstad: Metall. Mat.. Trans. B, 2012, vol. 43B, pp. 814–22.

    Article  Google Scholar 

  5. S. Rousseau, M. Benmansour, D. Morvan, and J. Amouroux: Sol. Energy Mater. Sol. Cells, 2007, vol. 91, pp. 1906–15.

    Article  Google Scholar 

  6. T. Ikeda and M. Maeda: Mater. Trans., 1996, vol. 37, pp. 983–87.

    Article  Google Scholar 

  7. C.P. Khattak, D.B. Joyce, and F. Schmid: Report NREL/SR-520-27593, National Renewable Energy Laboratory, 1999.

  8. C.P. Khattak, D.B. Joyce, and F. Schmid: Sol. Energy Mater. Sol. Cells, 2002, vol. 74, pp. 77–89.

    Article  Google Scholar 

  9. N. Yuge, M. Abe, K. Hanazawa, H. Baba, N. Nakamura, Y. Kato, Y. Sakaguchi, S. Hiwasa, and F. Aratani: Prog. Photovolt. Res. Appl., 2001, vol. 9, pp. 203–209.

    Article  Google Scholar 

  10. N. Nakamura, H. Baba, Y. Sakaguchi, and Y. Kato: Mater. Trans., 2004, vol. 45 (3), pp. 858–64.

    Article  Google Scholar 

  11. J.J. Wu, W.H. Ma, Y.N. Dai, and K. Morita: Trans. Nonferr. Met. Soc. China, 2009, vol. 19, pp. 463–67.

    Article  Google Scholar 

  12. J. Safarian, K. Tang, K. Hildal, G. Tranell: Metall. Mater. Trans. E, 2014, vol. 1E, pp. 41-47.

    Google Scholar 

  13. C. Alemany, C. Trassy, B. Pateyron, K.-I. Li, and Y. Delannoy: Sol. Energy Mater. Sol. Cells, 2002, vol. 72, pp. 41–48.

    Article  Google Scholar 

  14. E. Fourmond, C. Ndzogha, D. Pelletier, Y. Delannoy, C. Trassy, Y. Caratini, Y. Baluais, and R. Einhaus: 19th European Photovoltaic Solar Energy Conference, Paris, France. 7–11 June, 2004.

  15. Ø.S. Sortland, M. Tangstad: Metall. Mater. Trans. E, 2014, vol. 1E, pp. 211-25.

    Google Scholar 

  16. K. Tang, S. Andersson, E. Nordstrand, and M. Tangstad: JOM, 2012, vol. 64 (8), pp. 952–56.

    Article  Google Scholar 

  17. V. D. Eisenhüttenleute: Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Dusseldorf, Germany, 1995.

    Google Scholar 

  18. K. Tang, E.J. Øvrelid, G. Tranell, and M. Tangstad: 12th International Ferroalloys Congress, Helsinki, Finland. 6–9 June 2010, pp. 619–629.

  19. M. Næss, G. Tranell, J.E. Olsen, N. Kamfjord, K. Tang: Oxidation of Metals, Vol. 78 (2012), pp. 239-251.

    Article  Google Scholar 

  20. M.W. Chase: NIST-JANAF Thermochemical Tables, 4th ed., NIST, 1998.

  21. D. Feller, K.A. Peterson, and D.A. Dixon: J. Chem. Phys., 2008, vol. 129, 204105.

    Article  Google Scholar 

  22. K.A. Peterson, D. Feller, and D.A. Dixon: Theor. Chem. Acc., 2012, vol. 131, 1079.

    Article  Google Scholar 

  23. R.A. Kendall, T.H. Dunning, Jr., and R.J. Harrison: J. Chem. Phys., 1992, vol. 96 (9), pp. 6796-6806.

    Article  Google Scholar 

  24. T.H. Dunning, Jr., K.A. Peterson, and A.K. Wilson: J. Chem. Phys., 2001, vol. 114 (21), pp. 9244-9253.

    Article  Google Scholar 

  25. T. Van Mourik, A.K. Wilson, and T.H. Dunning, Jr.: Mol. Phys., 1999, vol. 96 (4), pp. 529-547.

    Article  Google Scholar 

  26. K.A. Peterson and T.H. Dunning, Jr.: J. Chem. Phys., 2002, vol. 117 (23), pp. 10548-10560.

    Article  Google Scholar 

  27. T.H. Dunning, Jr.: J. Chem. Phys., 1989, vol. 90 (2), pp. 1007-1023.

    Article  Google Scholar 

  28. D.E. Woon and T.H. Dunning, Jr.: J. Chem. Phys., 1993, vol. 98 (2), pp. 1358-1371.

    Article  Google Scholar 

  29. W. Klopper, J. Comp. Chem., 1997, vol. 18 (1), pp. 20-7.

    Article  Google Scholar 

  30. S. Stopkowicz and J. Gauss: J. Chem. Phys., 2008, vol. 129, 164119.

    Article  Google Scholar 

  31. CFOUR, Coupled-Cluster techniques for Computational Chemistry, a quantum-chemical program package by J.F. Stanton, J. Gauss, M.E. Harding, P.G. Szalay with contributions from A.A. Auer, R.J. Bartlett, U. Benedikt, C. Berger, D.E. Bernholdt, Y.J. Bomble, L. Cheng, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W.J. Lauderdale, D.A. Matthews, T. Metzroth, L.A. Mück, D.P. O’Neill, D.R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C. Simmons, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J.D. Watts and the integral packages MOLECULE (J. Almlöf and P.R. Taylor), PROPS (P.R. Taylor), ABACUS (T. Helgaker, H.J.A. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen. For the current version, see http://www.cfour.de.

  32. C. E. Hecht: Statistical Thermodynamics and Kinetic Theory, W. H. Freeman, New York, 1990.

    Google Scholar 

  33. C.E. Moore: Atomic Energy Levels, Natl. Bur. Stand. Ref. Data Ser., Natl. Bur. of Stand. (U.S), Circ. No. 35 (U.S. GPO, Washington D.C., 1971.

  34. A. Karton and J. M. L. Martin: J. Phys. Chem. A., 2007, vol. 111 (26), pp. 5936-5944.

    Article  Google Scholar 

  35. G. Wang, M. Chen, G. Jiang, H. Zhou, and M. Zhou: Chem. Phys., 2005, vol. 313, pp. 325-329.

    Article  Google Scholar 

  36. D. Feller, K.A. Peterson, and J. G. Hill: J. Chem. Phys., 2011, vol. 135, 044102.

    Article  Google Scholar 

  37. J. Safarian, M. Tangstad: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1427-1445.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar Safarian.

Additional information

Manuscript submitted December 4, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safarian, J., Tang, K., Olsen, J.E. et al. Mechanisms and Kinetics of Boron Removal from Silicon by Humidified Hydrogen. Metall Mater Trans B 47, 1063–1079 (2016). https://doi.org/10.1007/s11663-015-0566-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0566-9

Keywords

Navigation