Skip to main content
Log in

A Structural Molar Volume Model for Oxide Melts Part III: Fe Oxide-Containing Melts

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

As part III of this series, the model is extended to iron oxide-containing melts. All available experimental data in the FeO-Fe2O3-Na2O-K2O-MgO-CaO-MnO-Al2O3-SiO2 system were critically evaluated based on the experimental condition. The variations of FeO and Fe2O3 in the melts were taken into account by using FactSage to calculate the Fe2+/Fe3+ distribution. The molar volume model with unary and binary model parameters can be used to predict the molar volume of the molten oxide of the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-FeO-Fe2O3-Al2O3-SiO2 system in the entire range of compositions, temperatures, and oxygen partial pressures from Fe saturation to 1 atm pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. E. Thibodeau, A.E. Gheribi, and I.-H. Jung: “Part I,” accepted.

  2. E. Thibodeau, A.E. Gheribi, and I.-H. Jung: “Part II,” accepted.

  3. A. D. Pelton and M. Blander, “Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach - application to silicate slags,” Metallurgical and Materials Transactions B, vol. 17, pp. 805-815 (1986).

    Article  Google Scholar 

  4. C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack, I. H. Jung, Y. B. Kang, J. Melançon, A. D. Pelton, C. Robelin, and S. Petersen, “FactSage thermochemical software and databases— recent developments,” Calphad, vol. 33, pp. 295-311 (2009).

    Article  Google Scholar 

  5. R. L. Lange and I. S. E. Carmichael, “Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility,” Reviews in Mineralogy and Geochemistry, vol. 24, pp. 25-64 (1990).

    Google Scholar 

  6. S. A. Decterov, E. Jak, P. C. Hayes, and A. D. Pelton, “Experimental study of phase equilibria and thermodynamic optimization of the Fe-Zn-O system,” Metallurgical and Materials Transactions B, vol. 32B, pp. 643-657 (2001).

    Article  Google Scholar 

  7. E. Jak, P. Hayes, A. Pelton, and S. Decterov, “Thermodynamic optimisation of the FeO-Fe2O3-SiO2 (Fe-O-Si) system with FactSage,” International Journal of Materials Research, vol. 98, pp. 847-854 (2007).

    Article  Google Scholar 

  8. I.-H. Jung, S. A. Decterov, and A. D. Pelton, “Critical thermodynamic evaluation and optimization of the Fe-Mg-O system,” Journal of Physics and Chemistry of Solids, vol. 65, pp. 1683-1695 (2004).

    Article  Google Scholar 

  9. S. Decterov, I. H. Jung, E. Jak, Y. B. Kang, P. Hayes, and A. Pelton: VII International Conference on Molten Slags, Fluxes and Salts, 2004, pp. 839–49.

  10. I.-H. Jung, S. A. Decterov, and A. D. Pelton, “Critical thermodynamic evaluation and optimization of the FeO-Fe2O3-MgO-SiO2 system,” Metallurgical and Materials Transactions B, vol. 35B, pp. 877-889 (2004).

    Article  Google Scholar 

  11. Y. B. Kang and I. H. Jung: VIII International Conference on Molten Slags, Fluxes and Salt, 2009, pp. 459–71.

  12. 12. J. Henderson, R. G. Hudson, R. G. Ward, and G. Derge, “Density of liquid iron silicates,” Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, vol. 221, pp. 807-811 (1961).

    Google Scholar 

  13. A. Adachi, K. Ogino, and S. Kawasaki, “Measurement of the density of molten FeO-SiO2 slags by the archimedean method,” Technology Reports of the Osaka University, vol. 13, pp. 411-415 (1963).

    Google Scholar 

  14. J. Henderson, “Density of lime-iron oxide-silica melts,” Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, vol. 230, pp. 501-504 (1964).

    Google Scholar 

  15. R. G. Ward and P. L. Sachdev, “Density of iron oxide-silica melts,” Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, vol. 233, pp. 1496-1499 (1965).

    Google Scholar 

  16. D. R. Gaskell and R. G. Ward, “Density of iron oxide-silica melts,” Transactions of the Metallurgical Society of AIME, vol. 239, pp. 249-252 (1967).

    Google Scholar 

  17. K. Mori and K. Suzuki, “Density of iron oxide melts in equilibrium with carbon dioxide-carbon monoxide gas mixtures,” Tetsu to Hagane, vol. 54, pp. 1123-1127 (1968).

    Google Scholar 

  18. V. I. Sokolov, S. I. Popel, and O. A. Esin, “Density and molar volume of slags,” Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, vol. 13, pp. 10-15 (1970).

    Google Scholar 

  19. D. R. Gaskell and Y. E. Lee, “Densities and structures of melts in the system calcium oxide-iron(II, III) oxide-silicon dioxide,” Metallurgical Transactions, vol. 5, pp. 853-860 (1974).

    Article  Google Scholar 

  20. K. Ogino, M. Hirano, and A. Adachi, “Density of iron silicate slags,” Technology Reports of the Osaka University, vol. 24, pp. 49-55 (1974).

    Google Scholar 

  21. Y. Kawai, K. Mori, H. Shiraishi, and N. Yamada, “Surface tension and density of FeO-CaO-SiO2 melts,” Tetsu to Hagane, vol. 62, pp. 53-61 (1976).

    Google Scholar 

  22. Y. Shiraishi, K. Ikeda, A. Tamura, and T. Saito, “On the viscosity and density of the molten FeO-SiO2 system,” Transactions of the Japan Institute of Metals, vol. 19, pp. 264-274 (1978).

    Article  Google Scholar 

  23. S. Hara, K. Irie, D. R. Gaskell, and K. Ogino, “Densities of melts in the iron(II) oxide-iron(III) oxide-calcium oxide and iron(II) oxide-iron(III) oxide-dicalcium silicate (2CaO.SiO2) systems,” Transactions of the Japan Institute of Metals, vol. 29, pp. 977-989 (1988).

    Article  Google Scholar 

  24. A. S. Abrosimov, E. G. Gavrin, and V. I. Eremeichenkov, Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, 1975, pp. 14–17.

  25. S. Sumita, K. Morinaga, and T. Yanagase, “Density and surface tension of binary ferrite melts,” Journal of the Japan Institute of Metals, vol. 47, pp. 127-131 (1983).

    Google Scholar 

  26. A. Adachi and K. Ogino, “The density of molten slags containing ferrous oxide,” Technology Reports of the Osaka University, vol. 12, pp. 147-152 (1962).

    Google Scholar 

  27. D. R. Gaskell, A. McLean, and R. G. Ward, “Density and structure of ternary silicate melts,” Transactions of the Faraday Society, vol. 65, pp. 1498-1508 (1969).

    Article  Google Scholar 

  28. J. Holeczy, L. Bodnar, and K. Tomasek, “Density of an iron-oxygen-silica slag system,” Hutnicke Listy, vol. 27, pp. 364-368 (1972).

    Google Scholar 

  29. X. Mo, I. S. E. Carmichael, M. Rivers, and J. Stebbins, “The partial molar volume of iron oxide in multicomponent silicate liquids and the pressure dependence of oxygen fugacity in magmas,” Mineralogical Magazine, vol. 45, pp. 237-245 (1982).

    Article  Google Scholar 

  30. P. Courtial, E. Ohtani, and D. B. Dingwell, “High-temperature densities of some mantle melts,” Geochimica et Cosmochimica Acta, vol. 61, pp. 3111-3119 (1997).

    Article  Google Scholar 

  31. R. A. Lange and I. S. E. Carmichael, “Densities of Na2O-K2O-MgO-MgO-FeO-Fe2O3-Al3O3-TiO2-SiO2 liquids: New measurements and derived partial molar properties,” Geochimica et Cosmochimica Acta, vol. 51, pp. 2931-2946 (1987).

    Article  Google Scholar 

  32. D. B. Dingwell, M. Brearley, and J. E. Dickinson Jr, “Melt densities in the Na2O-FeO-Fe2O3-SiO2 system and the partial molar volume of tetrahedrally-coordinated ferric iron in silicate melts,” Geochimica et Cosmochimica Acta, vol. 52, pp. 2467-2475 (1988).

    Article  Google Scholar 

  33. Q. Liu and R. A. Lange, “The partial molar volume of Fe2O3 in alkali silicate melts: Evidence for an average Fe3+ coordination number near five,” American Mineralogist, vol. 91, pp. 385-393 (2006).

    Article  Google Scholar 

  34. X. Guo: Ph.D. Thesis, University of Michigan, 2013.

  35. M. Zielinski and B. Sikora, “Surface tension of the calcium oxide-alumina system with additions of silica, iron(III) oxide, calcium fluoride, sodium fluoride, and magnesia,” Prace Instytutu Metalurgii Zelaza im. Stanislawa Staszica, vol. 29, pp. 157-165 (1977).

    Google Scholar 

  36. P. Vadász, M. Havlík, and V. Danêk, “Density and surface tension of calcium-ferritic slags I. The systems CaO-FeO-Fe2O3-SiO2 and CaO-FeO-Fe2O3-Al2O3,” Canadian Metallurgical Quarterly, vol. 39, pp. 143-152 (2000).

    Article  Google Scholar 

  37. B. A. Bryantsev, Zhurnal Prikladnoi Khimii, vol. 41, pp. 2156-2159 (1968).

    Google Scholar 

  38. A. Adachi, K. Ogino, and S. Kuno, “The density of molten slags containing ferrous oxide,” Tetsu to Hagane, vol. 46, pp. 1243-1244 (1960).

    Google Scholar 

  39. T.-F. Wu, A. F. Vishkarev, and V. I. Yavoiskii, “Density of molten steel slags,” Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya, vol. 5, pp. 66-75 (1962).

    Google Scholar 

  40. T. Licko, V. Danek, and Z. Panek, “Densities of melts in the system calcium oxide-iron(II) oxide-iron(III) oxide-silicon dioxide,” Chemical Papers, vol. 39, pp. 599-605 (1985).

    Google Scholar 

  41. D. B. Dingwell and M. Brearley, “Melt densities in the CaO-FeO-Fe2O3-SiO2 system and the compositional dependence of the partial molar volume of ferric iron in silicate melts,” Geochimica et Cosmochimica Acta, vol. 52, pp. 2815-2825 (1988).

    Article  Google Scholar 

  42. S. A. Nelson and I. S. E. Carmichael, “Partial molar volumes of oxide components in silicate liquids,” Contributions to Mineralogy and Petrology, vol. 71, pp. 117-124 (1979).

    Article  Google Scholar 

  43. P. Vadász, M. Havlík, and V. Daněk, “Density and surface tension of the systems CaO-FeO-Fe2O3-MgO, CaO-FeO-Fe2O3-ZnO and CaO-Fe2O3-Cu2O,” Central European Journal of Chemistry, vol. 4, pp. 174-193 (2006).

    Google Scholar 

  44. C. W. Thomas: Ph.D. Thesis, California Institute of Technology, 2013.

  45. K. Tomasek, L. Bodnar, and J. Holeczy, “Density of iron-oxygen-silicon dioxide slag systems with lime, alumina, magnesia, or zinc oxide and its relation to surface tension,” Hutnicke Listy, vol. 30, pp. 136-138 (1975).

    Google Scholar 

  46. O. N. Fadeev, I. F. Khudyakov, I. D. Kashcheev, and G. P. Kharitidi, “Study of the density and surface tension of ferrous oxide-ferric oxide-silicon dioxide-aluminum oxide system melts,” Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya, vol. 1, pp. 17-20 (1980).

    Google Scholar 

  47. K. C. Mills and B. J. Keene, “Physical properties of BOS slags,” International Materials Reviews, vol. 32, pp. 1-120 (1987).

    Article  Google Scholar 

  48. J. O. M. Bockris, J. W. Tomlinson, and J. L. White, “The structure of the liquid silicates: Partial molar volumes and expansivities,” Transactions of the Faraday Society, vol. 52, pp. 299-310 (1956).

    Article  Google Scholar 

  49. J. W. Tomlinson, M. S. R. Heynes, and J. O. M. Bockris, “The structure of liquid silicates. Part 2.-Molar volumes and expansivities,” Transactions of the Faraday Society, vol. 54, pp. 1822-1833 (1958).

    Article  Google Scholar 

  50. M. Hino, T. Ejima, and M. Kameda, “Surface tension and density of liquid lead silicate,” Journal of the Japan Institute of Metals, vol. 31, pp. 113-119 (1967).

    Google Scholar 

  51. 51. H. Ito and T. Yanagase, “Studies on lead silicate melts,” Transactions of the Japan Insitute of Melts, vol. 1, pp. 115-120 (1960).

    Article  Google Scholar 

  52. P. Courtial and D. B. Dingwell, “Nonlinear composition dependence of molar volume of melts in the CaO-Al2O3-SiO2 system,” Geochimica et Cosmochimica Acta, vol. 59, pp. 3685-3695 (1995).

    Article  Google Scholar 

  53. Q. Liu and R. A. Lange, “The partial molar volume and thermal expansivity of TiO2 in alkali silicate melts: Systematic variation with Ti coordination,” Geochimica et Cosmochimica Acta, vol. 65, pp. 2379-2393 (2001).

    Article  Google Scholar 

  54. Y. Bottinga and D. F. Weill, “Densities of liquid silicate systems calculated from partial molar volumes of oxide components,” American Journal of Science, vol. 269, pp. 169-182 (1970).

    Article  Google Scholar 

  55. Y. Bottinga, D. Weill, and P. Richet, “Density calculations for silicate liquids. I. Revised method for aluminosilicate compositions,” Geochimica et Cosmochimica Acta, vol. 46, pp. 909-919 (1982).

    Article  Google Scholar 

  56. Y. Bottinga, P. Richet, and D. F. Weill, “Calculation of the density and thermal expansion coefficient of silicate liquids,” Bulletin de Mineralogie, vol. 106, pp. 129-138 (1983).

    Google Scholar 

Download references

Acknowledgments

Financial support from Hyundai Steel, JFE Steel Corporation, Nippon Steel & Sumitomo Metal, Nucor Steel, Posco, RioTinto, RHI, RIST, Tata Steel Europe, Voestalpine, and the Natural Science and Engineering Research Council of Canada (NSERC) is gratefully acknowledged. One of the authors (E.T.) also acknowledges the scholarship from the Fonds de Recherche du Quebec - Nature et Technologies (FRQNT) supporting his master study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Ho Jung Associate Professor.

Additional information

Manuscript submitted November 27, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thibodeau, E., Gheribi, A.E. & Jung, IH. A Structural Molar Volume Model for Oxide Melts Part III: Fe Oxide-Containing Melts. Metall Mater Trans B 47, 1187–1202 (2016). https://doi.org/10.1007/s11663-015-0549-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0549-x

Keywords

Navigation