Skip to main content
Log in

A Multi-scale Thermomechanical-Solidification Model to Simulate the Transient Force Field Deforming an Aluminum 6061 Semisolid Weld

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Formation of hot cracks is strongly affected by the transient force field acting on the semisolid weld-base metal interface. This paper presents a model that numerically simulates such a transient force field as a function of welding parameters. The model consists of two modules: (1) By means of a granular model of solidification, the microstructure of the semisolid area within the weld is reconstructed in three dimensions; (2) Since the transient force field is developed through the mechanical interaction between the semisolid weld and its base metal, the mechanical response of the base metal to the solidification of the weld is then simulated through finite element analysis. The results show that changing welding parameters and welding constraints varies the transient force field. Based on the obtained force fields, a qualitative study is also conducted to predict the susceptibility of various welds to hot cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Dye, O. Hunziker, R. C. Reed: Acta Mater., 2001, 49, pp. 683-697.

    Article  Google Scholar 

  2. N. Coniglio, C. E. Cross: Int. Mater. Rev., 2013, 58, pp. 375-397.

    Article  Google Scholar 

  3. L. Katgerman and D.J. Eskin: in Hot Cracking Phenomena in Welds II, C. Lippold and B. Herold, eds., Springer, Berlin, 2008, pp. 3–18.

  4. D.J. Eskin, F. Suyitno, L. Katgerman: Prog. Mater. Sci., 2004, 49, pp. 629–711.

    Article  Google Scholar 

  5. W. S. Pellini: J. Foundry, 1952, 80, pp. 124-133.

    Google Scholar 

  6. B. Magnin, L. Maenner, L. Katgerman, S. Engler: Mater. Sci. Forum, 1996, 217-222, pp. 1209-1214.

    Article  Google Scholar 

  7. N. N. Prokhorov: Russ. Castings Production, 1962, 2, pp. 172-175.

    Google Scholar 

  8. M. Rappaz, J. M. Drezet, M. Gremaud: Metall. Mater. Trans. A, 1999, 30A, pp. 449-455.

    Article  Google Scholar 

  9. J. C. Borland: Weld. Met. Fabr., 1979, 47, pp. 99-107.

    Google Scholar 

  10. T. Senda, F. Matsuda, G. Takano: J. Jpn. Weld. Soc., 1973, 42, pp. 48-56.

    Article  Google Scholar 

  11. K. Nakata, F. Matsuda: Trans. JWRI, 1995, 24, pp. 83-94.

    Google Scholar 

  12. I. I. Novikov, O. E. Grushko: Mater. Sci. Technol., 1995, 11, pp. 926-932.

    Article  Google Scholar 

  13. J.M. Drezet and D. Allehaux: in Hot Cracking Phenomena in Welds II, C. Lippold and B. Herold, eds., Springer, Berlin, 2008, pp. 19–38.

  14. S. Kou: ‘Welding metallurgy’, 2003, John Wiley & Sons Inc, New Jersey.

    Google Scholar 

  15. M. Rappaz, M. Bellet, M. Deville: ‘Numerical modelling in materials science and engineering’, 2003, Springer, New York.

    Book  Google Scholar 

  16. X. H. Zhong, Z. B. Dong, Y. H. Wei, R. Ma: J. Cryst. Growth, 2009, 311, pp. 4778-4783.

    Article  Google Scholar 

  17. C. Bordreuil, A. Niel: Comp. Mater. Sci., 2014, 82, pp. 442-450.

    Article  Google Scholar 

  18. H.R. ZareieRajani, A.B. Phillion: Acta Mater., 2014, vol. 77, pp. 162–72.

    Article  Google Scholar 

  19. H.R. ZareieRajani and A.B. Phillion: Mater. Sci. Forum, 2014, vol. 790, pp. 79–84.

    Article  Google Scholar 

  20. V. Mathier, A. Jacot, M. Rappaz: Mater. Sci. Eng., 2004, 12, pp. 479-490.

    Google Scholar 

  21. A. Slużalec: Theory of Thermomechanical Processes in Welding, Springer, Dordrecht, The Netherlands, 2005.

    Book  Google Scholar 

  22. L. E. Lindgren: ‘Computational welding mechanics: thermomechanical and microstructural simulations’, 2007, CRC Press, New York.

    Book  Google Scholar 

  23. Y. V. R. K. Prassad, S. Sasidhara, H. L. Gegel, J. C. Malas: ‘Hot working guide: A compendium of processing maps’, 1997, ASM International, Ohio.

    Google Scholar 

  24. S. Mahabunphachai, M. Koç: Mater. & Design, 2010, 31, pp. 2422-2434.

    Article  Google Scholar 

  25. L. Woei-Shyan, T. Zih-Chao: Mater. & Design, 2014, 58, pp. 116-124.

    Article  Google Scholar 

  26. A. Manes, L. Peroni, M. Scapin, M. Giglio: Procedia Engineering, 2011, 10, pp. 3477-3482.

    Article  Google Scholar 

  27. H.R. ZareieRajani, H. Torkamani, M. Sharbati, S.H. Raygan: Mater. Des., 2012, vol. 34, pp. 51–57.

    Article  Google Scholar 

  28. E. Giraud, M. Suery, M. Coret: Metall. Mater. Trans. A, 2010, 41A, pp. 2257-2268.

    Article  Google Scholar 

  29. A. B. Phillion, S. L. Cockcroft, P. D. Lee: Model. Simul. Mater. Sci. Eng., 2009, 17, pp. 1-15.

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the American Welding Society (AWS), Rio Tinto Alcan, and the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Zareie Rajani.

Additional information

Manuscript submitted May 5, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zareie Rajani, H.R., Phillion, A.B. A Multi-scale Thermomechanical-Solidification Model to Simulate the Transient Force Field Deforming an Aluminum 6061 Semisolid Weld. Metall Mater Trans B 46, 1942–1950 (2015). https://doi.org/10.1007/s11663-015-0387-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0387-x

Keywords

Navigation