Skip to main content
Log in

Effect of Particle Size on Microstructure and Cold Compaction of Gas-Atomized Hypereutectic Al-Si Alloy Powder

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The effect of particle size on the cold compaction behavior of rapidly solidified hypereutectic Al-27 wt pct Si alloy powder was studied by double action axial pressing at room temperature. The geometrical characteristics (morphology, size, shape, and distribution of Si reinforcing phase) and hardness of the powder as a function of the particle size were investigated. The result shows that finer powder particle size showed smaller primary Si particles and achieved a lower density at a given pressure. Whereas, the microhardness of Al matrix increases while the particle size decreases, which indicates that the supersaturation due to the high solidification rate increases the deformation resistance of the alloy powder. Furthermore, the geometrical characteristics of Si phases strongly depend on the particle size due to the suppressed growth of Si phases during atomization. This microstructural characteristic evidently affects the powder compactibility at high applied pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.P. Martin, A.M. Hodge, and G.H. Campbell: Scripta Mater., 2007, vol. 57, pp. 229-232.

    Article  Google Scholar 

  2. K.N. Ramakrishnan, R. Nagarajan, G.V. RamaRao, and S. Venkadesan: Mater. Lett., 1997, vol. 33, pp. 191-194.

    Article  Google Scholar 

  3. F. Delie and D. Bouvard: Acta Mater., 1998, vol. 46, pp. 3905-3913.

    Article  Google Scholar 

  4. W. Wu, G. Jiang, R.H. Wagoner, and G.S. Daehn: Acta Mater., 2000, vol. 48, pp. 4323-4330.

    Article  Google Scholar 

  5. P.J. Denny: Powder Technol., 2002, vol. 127, pp. 162-172.

    Article  Google Scholar 

  6. O. Dominguez, M. Phillippot, and J. Bigot: Scripta Mater., 1995, vol. 32, pp. 13-17.

    Article  Google Scholar 

  7. X.Y. Liu, L.X. Hu, and E.D. Wang: J. Alloys Compd., 2013, vol. 551, pp. 682-687.

    Article  Google Scholar 

  8. M.F. Moreno and C.J.R.G. Oliver: Powder Technol., 2011, vol. 206, pp. 297-305.

    Article  Google Scholar 

  9. O. Skrinjar and P.L. Larsson: Acta Mater., 2004, vol. 52, pp. 1871-1884.

    Article  Google Scholar 

  10. S.S. Razavi-Tousi, R. Yazdani-Rad, and S.A. Manafi: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1105-1110.

    Article  Google Scholar 

  11. H. Abdoli, E. Salahi, H. Farnoush, and K. Pourazrang: J. Alloys Compd., 2008, vol. 461, pp. 166-172.

    Article  Google Scholar 

  12. J.B. Fogagnolo, E.M. Ruiz-Navas, M.H. Robert, and J. M. Torralba: Mater. Sci. Eng. A, 2003, vol. 355, pp. 50-55.

    Article  Google Scholar 

  13. Z. Razavi Hesabi, H.R. Hafizpour, and A. Simchi: Mater. Sci. Eng. A, 2007, vol. 454–455, pp. 89–98.

  14. H.S. Kin, H.R. Lee, C.W. Won, S.S. Cho, B.S. Chun, and S.J. Kim: Scripta Mater., 1997, vol. 37, pp. 1715-1719.

    Article  Google Scholar 

  15. H.S. Kim: Mater. Sci. Eng. A, 1998, vol. 251, pp. 100-105.

    Article  Google Scholar 

  16. Y.Q. Liu, S.H. Wei, J.Z. Fan, Z.L. Ma, and T. Zuo: J. Mater. Sci. Technol., 2014, vol. 30, pp. 417-422.

    Article  Google Scholar 

  17. P.J. Ward, H.V. Atkinson, P.R.G. Anderson, L.G. Elias, B. Garcia, L. Kahlen, and J.M. Rodriguez-ibabe: Acta Mater., 1996, vol. 44, pp. 1717-1727.

    Article  Google Scholar 

  18. M.R. Akbarpour, E. Salahi, F.A. Hesari, A. Simchi, and H.S. Kim: Ceram. Int., 2014, vol. 40, pp. 951-960.

    Article  Google Scholar 

  19. M. Rajabi, A. Simchi, M. Vahidi, and P. Davami: J. Alloys Compd., 2008, vol. 466, pp. 111-118.

    Article  Google Scholar 

  20. M. Moazami-Goudarzi and F. Akhlaghi: Powder Technol., 2013, vol. 245, pp. 126-133.

    Article  Google Scholar 

  21. Y.E. Kalay, L.S. Chumbley, I.E. Anderson, and R.E. Napolitano: Metall. Mater. Trans., 2007, vol. 38A, pp. 1452-1457.

    Article  Google Scholar 

  22. Soon-Jik Hong: Mater. Trans., 2010, vol. 51, pp. 1055-1058.

    Article  Google Scholar 

  23. H.R. Hafizpour, A. Simchi, and S. Parvizi: Adv. Powder Technol., 2010, vol. 21, pp. 273-278.

    Article  Google Scholar 

  24. M.W. Ullah and T. Carlberg: J. Cryst. Growth, 2011, vol. 318, pp. 212-218.

    Article  Google Scholar 

  25. C.L. Xu and Q.C. Jiang: Mater. Sci. Eng. A, 2006, vol. 437, pp. 451-455.

    Article  Google Scholar 

  26. P. Dong, W.L. Hou, X.C. Chang, M.X. Quan, and J.Q. Wang: J. Alloys Compd., 2007, vol. 436, pp. 118-123.

    Article  Google Scholar 

  27. S. He, Y. Liu, S. Guo: Rare Metal mat. Eng. 2009, vol. 38, pp. 353-356.

    Google Scholar 

  28. J.L. Estrada and J. Duszczyk: J. Mater. Sci. 1990, vol. 25 pp.1381-1391.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge for the financial support from the National Key Fundamental Research Project of China (JPPT-125-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richu Wang.

Additional information

Manuscript submitted September 14, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Z., Wang, R., Peng, C. et al. Effect of Particle Size on Microstructure and Cold Compaction of Gas-Atomized Hypereutectic Al-Si Alloy Powder. Metall Mater Trans B 46, 824–830 (2015). https://doi.org/10.1007/s11663-014-0253-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0253-2

Keywords

Navigation