Skip to main content
Log in

Evolution of Complex Oxide Inclusions During the Smelting Process of Oxide Metallurgical Steel and Their Effect on Acicular Ferrite Nucleation

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

By sampling the important nodes in the smelting process of oxide metallurgical steel, the evolution of number density, size and type of complex oxide inclusions, and the effect of inclusions on prior austenite grain size and acicular ferrite (AF) nucleation were studied. The sampling nodes are before ladle furnace (LF) refining, add Ti, add Al, add Mg, add Ca, after Ruhrstahl-Heraeus (RH) refining, respectively. The results show that with the addition of Ti\Al\Mg\Ca, the core of inclusion gradually becomes Al2O3, Al–Ti–O, Al–Ti–Mg–O, Al–Ti–Mg–Ca–O, and a small amount of MnS is wrapped in the outer layer. After RH refining, the core of inclusion is Al–Mg–Ca–O, and a small amount of Ti–O–N and Al–Mg–O are enriched in the outer layer. These inclusions effectively induced AF nucleation. As the smelting process progresses, the average size of inclusions gradually decreases from 0.55 to 0.2 μm, and the number density and percentage of small size inclusions (0.1 to 0.2 μm) gradually increase. After RH refining, the nucleation probability of AF (NAF) of small size inclusions is 7.8 pct, and the NAF of inclusions in the range of 0.4 to 0.8 μm is greater than 70 pct. The small size inclusions are an important part of inducing AF nucleation, which can also effectively pin the prior austenite grain boundaries, and the larger the proportion of small size inclusions, the finer the prior austenite grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X. Luo, G. Xu, X. Chen, and Z. Wang: Mater. Sci. Eng. A, 2022, vol. 833, p. 142571 https://doi.org/10.1016/j.msea.2021.142571.

    Article  CAS  Google Scholar 

  2. H. Deng, Z. Liu, X. Wang, J. Ma, F. Han, and Z. Wang: Mater. Today Commun., 2022, vol. 33, p. 104407 https://doi.org/10.1016/j.mtcomm.2022.104407.

    Article  CAS  Google Scholar 

  3. W. Guo, Y. Cai, B. Wang, W. Mu, and D. Xin: Mater. Sci. Eng. A, 2022, vol. 830, p. 142240 https://doi.org/10.1016/j.msea.2021.142240.

    Article  CAS  Google Scholar 

  4. X. Li, X. Ma, S.V. Subramanian, C. Shang, and R.D.K. Misra: Mater. Sci. Eng. A, 2014, vol. 616, pp. 141–47. https://doi.org/10.1016/j.msea.2014.07.100.

    Article  CAS  Google Scholar 

  5. W.-H. Choi, S.-K. Cho, K.W.-K. Choi, and J.-M. Han: J. Korean Weld. Join. Soc., 2012, vol. 30, pp. 64–71. https://doi.org/10.5781/kwjs.2012.30.1.64.

    Article  Google Scholar 

  6. Z. Xiong, S. Liu, X. Wang, C. Shang, and R.D.K. Misra: Mater Charact, 2015, vol. 106, pp. 232–39. https://doi.org/10.1016/j.matchar.2015.06.001.

    Article  CAS  Google Scholar 

  7. S.J. Lv, H.H. Wu, K.Y. Wang, S.Z. Wang, G.L. Wu, J.H. Gao, X.S. Yang, J.M. Zhu, and X.P. Mao: Comput. Mater. Sci., 2023, vol. 218, p. 111989 https://doi.org/10.1016/j.commatsci.2022.111989.

    Article  CAS  Google Scholar 

  8. W.L. Costin, O. Lavigne, and A. Kotousov: Mater. Sci. Eng. A, 2016, vol. 663, pp. 193–203. https://doi.org/10.1016/j.msea.2016.03.103.

    Article  CAS  Google Scholar 

  9. H. Zhao, B.P. Wynne, and E.J. Palmiere: J. Mater. Sci., 2018, vol. 53, pp. 3785–3804. https://doi.org/10.1007/s10853-017-1781-3.

    Article  ADS  CAS  Google Scholar 

  10. H.S. Kim, M. Jo, J.Y. Park, B.J. Kim, H.C. Kim, D. Nam, B. Kim, and Y.S. Ahn: Mater. Sci. Eng. A, 2022, vol. 857, p. 144125 https://doi.org/10.1016/j.msea.2022.144125.

    Article  CAS  Google Scholar 

  11. Y. Shao, C. Liu, Z. Yan, H. Li, and Y. Liu: J. Mater. Sci. Technol., 2018, vol. 34, pp. 737–44. https://doi.org/10.1016/j.jmst.2017.11.020.

    Article  Google Scholar 

  12. Y. Kang, S. Jeong, J.H. Kang, and C. Lee: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 2842–54. https://doi.org/10.1007/s11661-016-3456-0.

    Article  ADS  CAS  Google Scholar 

  13. J.H. Shim, Y.W. Cho, S.H. Chung, J.D. Shim, and D.N. Lee: Acta Mater., 1999, vol. 47, pp. 2751–60. https://doi.org/10.1016/S1359-6454(99)00114-7.

    Article  ADS  CAS  Google Scholar 

  14. Z. Zhang and R.A. Farrar: Mater. Sci. Technol., 1996, vol. 12, pp. 237–60. https://doi.org/10.1179/mst.1996.12.3.237.

    Article  ADS  CAS  Google Scholar 

  15. C. Xuan and W. Mu: Mater. Des., 2022, vol. 221, p. 110892 https://doi.org/10.1016/j.matdes.2022.110892.

    Article  CAS  Google Scholar 

  16. J.H. Shim, Y.J. Oh, J.Y. Suh, Y.W. Cho, J.D. Shim, J.S. Byun, and D.N. Lee: Acta Mater., 2001, vol. 49, pp. 2115–22. https://doi.org/10.1016/S1359-6454(01)00134-3.

    Article  ADS  CAS  Google Scholar 

  17. J.H. Shim, J.S. Byun, Y.W. Cho, Y.J. Oh, J.D. Shim, and D.N. Lee: Scripta Mater., 2001, vol. 44, pp. 49–54. https://doi.org/10.1016/S1359-6462(00)00560-1.

    Article  CAS  Google Scholar 

  18. T. Furuhara, T. Shinyoshi, G. Miyamoto, J. Yamaguchi, N. Sugita, N. Kimura, N. Takemura, and T. Maki: ISIJ Int., 2003, vol. 43, pp. 2028–37. https://doi.org/10.2355/isijinternational.43.2028.

    Article  CAS  Google Scholar 

  19. Y. Morikage, K. Oi, F. Kawabata, and K. Amano: Tetsu-To-Hagane/J. Iron Steel Inst. Jpn, 1998, vol. 84, pp. 510–15. https://doi.org/10.2355/tetsutohagane1955.84.7_510.

    Article  CAS  Google Scholar 

  20. H.H. Jin, J.H. Shim, Y.W. Cho, and H.C. Lee: ISIJ Int., 2003, vol. 43, pp. 1111–13. https://doi.org/10.2355/isijinternational.43.1111.

    Article  CAS  Google Scholar 

  21. Ø. Grong, A.O. Kluken, H.K. Nylund, A.L. Dons, and J. Hjelen: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 525–34. https://doi.org/10.1007/BF02663903.

    Article  ADS  CAS  Google Scholar 

  22. S. Zhang, N. Hattori, M. Enomoto, and T. Tarui: ISIJ Int., 1996, vol. 36, pp. 1301–09. https://doi.org/10.2355/isijinternational.36.1301.

    Article  CAS  Google Scholar 

  23. B. Zhou, G. Li, X. Wan, Y. Li, and K. Wu: Met. Mater. Int., 2016, vol. 22, pp. 267–75. https://doi.org/10.1007/s12540-016-5301-9.

    Article  CAS  Google Scholar 

  24. F.C. Liu, J.W. Li, Q. Wang, Y.D. Liu, Y. Bai, T. He, and G. Yuan: Mater. Sci. Eng. A, 2021, vol. 824, p. 141795 https://doi.org/10.1016/j.msea.2021.141795.

    Article  CAS  Google Scholar 

  25. H.K. Sung, S.S. Sohn, S.Y. Shin, K.S. Oh, and S. Lee: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3036–50. https://doi.org/10.1007/s11661-014-2240-2.

    Article  ADS  CAS  Google Scholar 

  26. M.M. Song, B. Song, S.H. Zhang, Z.L. Xue, Z.B. Yang, and R.S. Xu: ISIJ Int., 2017, vol. 57, pp. 1261–67. https://doi.org/10.2355/isijinternational.ISIJINT-2017-037.

    Article  CAS  Google Scholar 

  27. C.R. Manuel, M.R. Marcos, A.H.T. Martín, S.M. Rodolfo, C.U. Fabián, and M.E. Arturo: J. Mater. Res. Technol., 2022, vol. 21, pp. 3870–84. https://doi.org/10.1016/j.jmrt.2022.10.105.

    Article  CAS  Google Scholar 

  28. G. Xu: J. Steel, 2006, vol. 2, pp. 12–15. https://doi.org/10.3969/j.issn.1002-1043.2006.01.005.

    Article  ADS  Google Scholar 

  29. F.J. Li, H.G. Li, D. Huang, S.B. Zheng, and J.L. You: Met. Mater. Int., 2018, vol. 24, pp. 1394–1402. https://doi.org/10.1007/s12540-018-0141-4.

    Article  CAS  Google Scholar 

  30. J.S. Seo, K.H. Kim, H.J. Kim, and C. Lee: Weld. World, 2013, vol. 57, pp. 65–72. https://doi.org/10.1007/s40194-012-0009-z.

    Article  CAS  Google Scholar 

  31. W. Liu, M. Li, S. Yang, Z. Xu, C. Huang, T. Liu, and J. Li: J. Mater. Res. Technol., 2022, vol. 18, pp. 990–97. https://doi.org/10.1016/j.jmrt.2022.03.014.

    Article  CAS  Google Scholar 

  32. P.J. Chen, C.Y. Zhu, G.Q. Li, Y.W. Dong, and Z.C. Zhang: ISIJ Int., 2017, vol. 57, pp. 1019–28. https://doi.org/10.2355/isijinternational.ISIJINT-2017-007.

    Article  CAS  Google Scholar 

  33. T.K. Lee, H.J. Kim, B.Y. Kang, and S.K. Hwang: ISIJ Int., 2000, vol. 40, pp. 1260–68. https://doi.org/10.2355/isijinternational.40.1260.

    Article  CAS  Google Scholar 

  34. F. Liu, Q. Wang, J. Li, Y. Liu, T. He, and G. Yuan: Mater Charact, 2021, vol. 181, p. 111503 https://doi.org/10.1016/j.matchar.2021.111503.

    Article  CAS  Google Scholar 

  35. O. Grong, L. Kolbeinsen, C. van der Eijk, and G. Tranell: ISIJ Int., 2006, vol. 46, pp. 824–31. https://doi.org/10.2355/isijinternational.46.824.

    Article  CAS  Google Scholar 

  36. J.L. Lee: Acta Metall. Mater., 1994, vol. 42, pp. 3291–98. https://doi.org/10.1016/0956-7151(94)90461-8.

    Article  CAS  Google Scholar 

  37. F.J. Barbaro, P. Krauklis, and K.E. Easterling: Mater. Sci. Technol., 1989, vol. 5, pp. 1057–68. https://doi.org/10.1179/mst.1989.5.11.1057.

    Article  ADS  CAS  Google Scholar 

  38. D.S. Sarma, A.V. Karasev, and P.G. Jonsson: ISIJ Int., 2009, vol. 49, pp. 1063–74. https://doi.org/10.2355/isijinternational.49.1063.

    Article  CAS  Google Scholar 

  39. T. Pan, Z. Yang, B. Bai, and H. Fang: Acta Metall. Sin., 2003, vol. 39, pp. 1037–42. https://www.ams.org.cn/CN/Y2003/V39/I10/1037.

  40. M. Lee, N. Kang, S. Liu, and K. Cho: Sci. Technol. Weld. Join., 2016, vol. 21, pp. 711–19. https://doi.org/10.1080/13621718.2016.1178833.

    Article  CAS  Google Scholar 

  41. L. Lan, C. Qiu, and L. Du: Theor. Appl. Fract. Mech., 2023, vol. 124, p. 103762 https://doi.org/10.1016/j.tafmec.2023.103762.

    Article  CAS  Google Scholar 

  42. H. Zhao and E.J. Palmiere: Mater Charact, 2018, vol. 145, pp. 479–89. https://doi.org/10.1016/j.matchar.2018.09.013.

    Article  CAS  Google Scholar 

  43. C.K. Lin, Y.H. Su, W.S. Hwang, G.R. Lin, and J.C. Kuo: Mater. Sci. Technol., 2018, vol. 34, pp. 596–606. https://doi.org/10.1080/02670836.2017.1421037.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the Key R&D Program of Shandong Province, China (No. 2023CXGC010310).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

Yansen Hao helped us to obtain the samples in smelting process in the factory, which is the basis for the experiment in this paper.

Corresponding authors

Correspondence to Bingxing Wang or Bin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Li, H., Yang, Y. et al. Evolution of Complex Oxide Inclusions During the Smelting Process of Oxide Metallurgical Steel and Their Effect on Acicular Ferrite Nucleation. Metall Mater Trans A 55, 724–735 (2024). https://doi.org/10.1007/s11661-023-07266-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07266-8

Navigation