Skip to main content

Advertisement

Log in

Effect of Ni on Microstructures and Mechanical Properties for Multielemental Nb–Si-Based Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Eight-element Nb–Si alloys (Nb–Si–Ti–Cr–Al–Hf–Zr–Ni) with different Ni contents were prepared by arc melting to obtain Nb–Si alloys with high mechanical properties. Phase selection, microstructure evolution, room-temperature fracture toughness, and compressive properties were investigated systematically. Results showed that the eutectic Nb–Si alloy becomes a hypereutectic Nb–Si alloy with the increase in Ni content. All alloys contain Nbss, γ-(Nb, X)5Si3 and Cr2(Nb, X) phases, and 2Ni and 3Ni alloys also contain the primary α-(Nb, X)5Si3 phase. With the increase in Ni content, the content and size of the primary α-(Nb, X)5Si3 phase increased. KQ first increased and then decreased, with the highest KQ of 12.6 MPa m1/2 occurring in the 2Ni alloy. The room-temperature maximum compressive strength was improved with 1 at. pct Ni addition but decreased with higher Ni addition. The strengthening mechanism is solid solution strengthening and a high content of the γ-(Nb, X)5Si3 phase by Ni element addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. Tsakiropoulos: J. Alloys Compd., 2018, vol. 748, pp. 569–76.

    Article  CAS  Google Scholar 

  2. B.P. Bewley, M.R. Jackson, and J.C. Zhao: MRS Bull., 2003, vol. 28, pp. 636–46.

    Google Scholar 

  3. M.G. Mendiratta, J.J. Lewandowski, and D.M. Dimiduk: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 1573–83.

    Article  CAS  Google Scholar 

  4. I. Papadimitriou, C. Utton, and P. Tsakiropoulos: Sci. Technol. Adv. Mater., 2017, vol. 18, pp. 467–79.

    Article  CAS  Google Scholar 

  5. G. Tai, C. Li, and B. Jing: Intermetallics, 2009, vol. 34, pp. 363–76.

    Google Scholar 

  6. Y.X. Tian, J.T. Guo, and L.Y. Sheng: Intermetallics, 2008, vol. 16, pp. 807–12.

    Article  CAS  Google Scholar 

  7. Y. Sainan, J. Lina, and S. Linfen: Intermetallics, 2013, vol. 38, pp. 102–06.

    Article  Google Scholar 

  8. B.P. Bewley, S.D. Sitzman, and L.N. Brewer: Microsc. Microanal., 2004, vol. 10, pp. 470–80.

    Article  Google Scholar 

  9. Y.H. Duan: Rare Met. Mater. Eng., 2015, vol. 44, pp. 18–23.

    Article  CAS  Google Scholar 

  10. D.Z. Chen, Q. Wang, and R.R. Chen: Mater. Charact., 2021, vol. 182, p. 111563.

    Article  CAS  Google Scholar 

  11. S. Zhang and X.P. Guo: Intermetallics, 2016, vol. 70, pp. 33–44.

    Article  CAS  Google Scholar 

  12. S. Zhang and X.P. Guo: Mater. Sci. Eng. A, 2015, vol. 638, pp. 121–31.

    Article  CAS  Google Scholar 

  13. G.X. Sun, L.N. Jia, and C.T. Ye: Intermetallics, 2021, vol. 133, p. 107172.

    Article  CAS  Google Scholar 

  14. W.Y. Kim, H. Tanaka, and A. Kasama: Intermetallics, 2001, vol. 9, pp. 827–34.

    Article  CAS  Google Scholar 

  15. Z.F. Li and P. Tsakiropoulos: Intermetallics, 2010, vol. 18, pp. 1072–78.

    Article  CAS  Google Scholar 

  16. K.S. Chan: Mater. Sci. Eng. A, 2002, vol. 329, pp. 513–22.

    Article  Google Scholar 

  17. E.Y. Guo and S.S. Sudhanshu: Mater. Sci. Eng. A, 2017, vol. 687, pp. 99–106.

    Article  CAS  Google Scholar 

  18. K.S. Chan: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2315–28.

    Article  CAS  Google Scholar 

  19. D.L. Davidson and K.S. Chan: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2007–18.

    Article  CAS  Google Scholar 

  20. S.M. Zhang, J.R. Zhou, and J.B. Sha: Intermetallics, 2015, vol. 57, pp. 146–55.

    Article  CAS  Google Scholar 

  21. K.S. Chan: Mater. Sci. Eng. A, 2002, vol. 337, pp. 59–66.

    Article  Google Scholar 

  22. K.S. Chan and D.L. Davidson: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1833–49.

    Article  CAS  Google Scholar 

  23. W. Wang, B. Zhang, and C. Zhou: Corros. Sci., 2014, vol. 86, pp. 304–09.

    Article  CAS  Google Scholar 

  24. Y. Murayama and S. Hanada: Sci. Technol. Adv. Mater., 2002, vol. 3, pp. 145–56.

    Article  CAS  Google Scholar 

  25. J. Sha, C. Yang, and J. Liu: Scripta Mater., 2010, vol. 62, pp. 859–62.

    Article  CAS  Google Scholar 

  26. K.S. Chan: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1833–49.

    Article  CAS  Google Scholar 

  27. K. Zelenitsas and P. Tsakiropoulos: Mater. Sci. Eng. A, 2006, vol. 416, pp. 269–80.

    Article  Google Scholar 

  28. T. Murakami, S. Sasaki, and K. Ichikawa: Intermetallics, 2001, vol. 9, pp. 629–35.

    Article  CAS  Google Scholar 

  29. K. Zelenitsas and P. Tsakiropoulos: Intermetallics, 2005, vol. 13, pp. 1079–95.

    Article  CAS  Google Scholar 

  30. S. Kashyap, C.S. Tiwary, and K. Chattopadhyay: Mater. Sci. Eng. A, 2013, vol. 559, pp. 74–85.

    Article  CAS  Google Scholar 

  31. Z.P. Sun, J.M. Guo, and Z. Chen: Rare Met. Mater. Eng., 2016, vol. 45, pp. 1678–82.

    Article  CAS  Google Scholar 

  32. G. Kommineni, B.R. Golla, and Z. Alam: J. Alloys Compd., 2021, vol. 873, p. 159832.

    Article  CAS  Google Scholar 

  33. G. Kommineni, A.M. Zafir, and R. Sarkar: Mater. Charact., 2020, vol. 171, p. 110723.

    Article  Google Scholar 

  34. Y. Li, X. Lin, and Y. Hu: J. Alloys Compd., 2019, vol. 783, pp. 66–76.

    Article  CAS  Google Scholar 

  35. M. Sankar, G. Phanikumar, and V. Prasad: Mater. Sci. Eng. A, 2019, vol. 754, pp. 224–31.

    Article  CAS  Google Scholar 

  36. K. Geethasree, V. Prasad, and G.B. Raju: Corros. Sci., 2019, vol. 148, pp. 293–306.

    Article  CAS  Google Scholar 

  37. M. Sankar, G. Phanikumar, and V. Prasad: Mater. Today Proc., 2016, vol. 3, pp. 3094–3103.

    Article  Google Scholar 

  38. S. Miura, T. Hatabata, and T. Okawa: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1136–47.

    Article  Google Scholar 

  39. ASTM International: Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials: ASTM E399-12, ASTM, West Conshohocken, 2012.

    Google Scholar 

  40. A. Takeuchi and A. Inoue: Mater. Trans., 2005, vol. 46, pp. 2817–29.

    Article  CAS  Google Scholar 

  41. Q. Wang, T.Y. Zhao, and R.R. Chen: Mater. Sci. Eng. A, 2021, vol. 804, p. 140789.

    Article  CAS  Google Scholar 

  42. V.O.D. Santos, H.M. Petrilli, and L. Eleno: CALPHAD-Comput. Coupling Phase Diagr. Thermochem., 2015, vol. 51, pp. 57–66.

    Article  Google Scholar 

  43. F. Gang, A. Kauffmann, and M. Heilmaier: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 763–71.

    Article  Google Scholar 

  44. S. Zhang, L. Wei, and J. Sha: Prog. Nat. Sci., 2018, vol. 28, pp. 96–104.

    CAS  Google Scholar 

  45. S. Zhang and X.P. Guo: Intermetallics, 2015, vol. 57, pp. 83–92.

    Article  CAS  Google Scholar 

  46. G. Qin, R.R. Chen, and P.K. Liaw: Nanoscale, 2020, vol. 12, pp. 3965–76.

    Article  CAS  Google Scholar 

  47. N. Sekido, Y. Kimura, and S. Miura: J. Alloys Compd., 2006, vol. 425, pp. 223–29.

    Article  CAS  Google Scholar 

  48. Y. Guo, L. Jia, and B. Kong: Intermetallics, 2017, vol. 92, pp. 1–6.

    Article  Google Scholar 

  49. R.M. Nekkanti and D.M. Dimiduk: Mater. Res. Soc. Symp. Proc., 1990, vol. 194, pp. 175–82.

    Article  CAS  Google Scholar 

  50. R.W. Armstrong: Eng. Fract. Mech., 1987, vol. 28, pp. 529–38.

    Article  Google Scholar 

  51. B. Kong and L.N. Jia: Adv. Eng. Mater., 2017, vol. 19, p. 1700442.

    Article  Google Scholar 

  52. M.E. Schlesinger, H. Okamoto, and A.B. Gokhale: J. Phase Equilib., 1993, vol. 14, pp. 502–09.

    Article  CAS  Google Scholar 

  53. R. Ma and X.P. Guo: J. Alloys Compd., 2021, vol. 870, p. 159437.

    Article  CAS  Google Scholar 

  54. Y. Li, C. Li, and Z. Du: CALPHAD-Comput. Coupling Phase Diagr. Thermochem., 2013, vol. 43, pp. 112–23.

    Article  CAS  Google Scholar 

  55. S. Zhang and X. Guo: Intermetallics, 2015, vol. 64, pp. 51–58.

    Article  CAS  Google Scholar 

  56. Y. Qiao, X.P. Guo, and Y Zeng. Intermetallics, 2017, vol. 88, pp. 19–27.

    Article  CAS  Google Scholar 

  57. M. Xiao, X.P. Guo, and M. Fu: Intermetallics, 2018, vol. 98, pp. 11–17.

    Article  Google Scholar 

  58. Y. Wang, L. Jia, and G. Sun: Int. J. Refract. Met. Hard Mater., 2020, vol. 94, p. 105359.

    Article  Google Scholar 

  59. Z. Li and L.M. Peng: Acta Mater., 2007, vol. 55, pp. 6573–85.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the National Natural Science Foundation of China (51825401) and Young Scientist Studio of Harbin Institute of Technology.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Wang or Ruirun Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Wang, Q., Chen, R. et al. Effect of Ni on Microstructures and Mechanical Properties for Multielemental Nb–Si-Based Alloys. Metall Mater Trans A 53, 1793–1805 (2022). https://doi.org/10.1007/s11661-022-06634-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06634-0

Navigation