Skip to main content
Log in

Weld Quality and Microstructure Development in Ultrasonically Welded Titanium Joints

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Joints of 0.5 mm thick sheets of commercially pure titanium have been processed by ultrasonic spot welding with the amplitude of vibrations 20 µm and welding time 2 and 3 seconds under the clamping force varied from 5 to 7 kN. It is shown that an increase in the clamping force and welding time results in an increase of the dimensions of defect-free bonded area and decrease of the thickness of the sheets. Ultrasonic welding results in the formation of thermomechanically affected zone (TMAZ), in which significant changes in the microstructure and microtexture occur. The α grain size in the central region of the TMAZ increases from 7 up to 130 µm, the fraction of low angle boundaries increases and sharp peaks near 60 deg and 90 deg appear in the misorientation angle distribution of α grain boundaries. The ultrasonically welded samples exhibit high lap shear strengths similar to those obtained by resistance spot welding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. H.O. Willrich: Weld. J., 1950, vol. 18, pp. 61–66.

    Google Scholar 

  2. M.P. Matheny and K.F. Graff: Power Ultrasonics—Applications of High-Intensity Ultrasound, Woodhead, Cambridge, 2015, pp. 259–93.

    Google Scholar 

  3. Z.L. Ni and F.X. Ye: J. Manuf. Process.., 2018, vol. 35, pp. 580–94.

    Article  Google Scholar 

  4. Z. Su, Z. Zhu, Y. Zhang, H. Zhang, and Q. Xiao: Metals., 2021, vol. 11, p. 61.

    Article  CAS  Google Scholar 

  5. D. Bakavos and P.B. Prangnell: Mater. Sci. Eng. A., 2010, vol. 527, pp. 6320–34.

    Article  Google Scholar 

  6. C.Q. Zhang, J.D. Robson, and P.B. Prangnell: J. Mater. Process. Technol., 2016, vol. 231, pp. 382–88.

    Article  CAS  Google Scholar 

  7. J. Devine: ASM Handbook, Welding, Brazing, and Soldering, vol. 6, ASM International, Materials Park, 1994, pp. 900–10.

    Google Scholar 

  8. V.M. Sagalevich: Welding in Mechanical Engineering: Handbook, Mechanical Engineering Publishers, Moscow, 1979, p. 75. (in Russian).

    Google Scholar 

  9. R. Jahn, R. Cooper, and D. Wilkosz: Metall. Mater. Trans. A., 2007, vol. 38A, pp. 570–83.

    Article  CAS  Google Scholar 

  10. A. Macwan and D.L. Chen: Mater. Des., 2015, vol. 84, pp. 261–69.

    Article  CAS  Google Scholar 

  11. Z.L. Ni, J.J. Yang, Y.X. Hao, L.F. Chen, S. Li, X.X. Wang, and F.X. Ye: Int. J. Adv. Manuf. Technol., 2020, vol. 107, pp. 585–606.

    Article  Google Scholar 

  12. H.T. Fujii, H. Endo, Y.S. Sato, and H. Kokawa: Mater. Charact., 2018, vol. 139, pp. 233–40.

    Article  CAS  Google Scholar 

  13. L. Xu, L. Wang, Y.C. Chen, J.D. Robson, and P.B. Prangnell: Metall. Mater. Trans. A., 2016, vol. 47A, pp. 334–46.

    Article  Google Scholar 

  14. V.K. Patel, S.D. Bhole, and D.L. Chen: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 2055–66.

    Article  Google Scholar 

  15. A. Panteli, J.D. Robson, Y.C. Chen, and P.B. Prangnell: Metall. Mater. Trans. A., 2013, vol. 44A, pp. 5773–81.

    Article  Google Scholar 

  16. J. Yang, B. Cao, and Q. Lu: Materials., 2017, vol. 10, p. 193.

    Article  Google Scholar 

  17. B. Sanga, R. Wattal, and D.S. Nagesh: Period. Eng. Nat. Sci., 2018, vol. 6, pp. 107–19.

    Google Scholar 

  18. W.J. Lewis, J.N. Antonevich, R.E. Monroe, and P.J. Rieppel: Fundamental Studies on the Mechanism of Ultrasonic Welding, WADD Technical Report 60-607, 1960.

  19. M. Bloss and K. Graff: Trends Weld. Res. Proc. 8th Int. Conf., ASM International, Metals Park, OH, 2009, pp. 348–53.

  20. T. Owa, T. Kondo, and H. Takizawa: Weld. Int., 2010, vol. 24, pp. 182–87.

    Article  Google Scholar 

  21. Z. Zhu, M. Li, Z. Su, D. Zhang, and Y. Zhang: Transactions on Intelligent Welding Manufacturing, Springer, Singapore, 2018, pp. 120–29.

    Book  Google Scholar 

  22. S. Lee, T. Kim, S. Hu, W. Cai, J. Li, and J. Abell: J. Manuf. Sci. Eng. Trans. ASME, 2012, vol. 135, 021004.

    Google Scholar 

  23. J.-Y. Lin, Z.-H. Lai, T. Otsuki, H.-W. Yen, and Sh. Nambu: Mater. Sci. Eng. A., 2021, vol. 825, p. 141885.

    Article  CAS  Google Scholar 

  24. J.-Y. Lin, Sh. Nambu, and T. Koseki: Scripta Mater., 2020, vol. 178, pp. 218–22.

    Article  CAS  Google Scholar 

  25. M.P. Satpathy, B. Patel, and S.K. Sahoo: Ain Shams Eng. J., 2019, vol. 10, pp. 811–19.

    Article  Google Scholar 

  26. H. Conrad: Prog. Mater. Sci., 1981, vol. 26, pp. 123–403.

    Article  CAS  Google Scholar 

  27. N. Gey and M. Humbert: Acta Mater., 2002, vol. 50, pp. 277–87.

    Article  CAS  Google Scholar 

  28. W.G. Burgers: Physica., 1934, vol. 1, pp. 561–86.

    Article  CAS  Google Scholar 

  29. SYu. Mironov and M.M. Myshlyaev: Phys. Solid State., 2007, vol. 49, pp. 858–64.

    Article  CAS  Google Scholar 

  30. S.C. Wang, M. Aindow, and M.J. Starink: Acta Mater., 2003, vol. 51, pp. 2485–2503.

    Article  CAS  Google Scholar 

  31. X.Y. Wang, W.Y. Li, T.J. Ma, and A. Vairis: Mater. Des., 2017, vol. 116, pp. 115–26.

    Article  CAS  Google Scholar 

  32. Y. Jiang, Zh. Chen, C. Zhan, T. Chen, R. Wang, and Ch. Liu: Mater. Sci. Eng. A., 2015, vol. 640, pp. 436–42.

    Article  CAS  Google Scholar 

  33. S. Elangovan, S. Semeer, and K. Prakasan: J. Mater. Process. Technol., 2009, vol. 209, pp. 1143–50.

    Article  CAS  Google Scholar 

  34. H. Huang, J. Chen, Y.C. Lim, X. Hu, J. Cheng, Zh. Feng, and X. Sun: J. Mater. Process. Technol., 2019, vol. 272, pp. 125–36.

    Article  CAS  Google Scholar 

  35. F. Haddadi and D. Tsivoulas: Mater. Charact., 2016, vol. 118, pp. 340–51.

    Article  CAS  Google Scholar 

  36. Z. Su, Z. Zhu, Y. Zhang, and H. Zhang: Mater. Res., 2021, vol. 24, p. e20200488.

    Article  CAS  Google Scholar 

  37. U. Zwicker: Titan und titanlegierungen, Springer, Berlin, 1974, pp. 248–337.

    Google Scholar 

  38. I. Weiss and S.L. Semiatin: Mater. Sci. Eng. A., 1999, vol. 263, pp. 243–56.

    Article  Google Scholar 

  39. H. Peng, D. Chen, and X. Jiang: Materials., 2017, vol. 10, p. 449.

    Article  Google Scholar 

  40. V.K. Patel, S.D. Bhole, and D. Chen: Mater. Sci. Eng. A., 2013, vol. 569, pp. 78–85.

    Article  CAS  Google Scholar 

  41. A. Macwan and D.L. Chen: Metall. Mater. Trans. A., 2016, vol. 47A, pp. 1686–97.

    Article  Google Scholar 

  42. Z.L. Ni and F.X. Ye: Mater. Lett., 2016, vol. 185, pp. 204–07.

    Article  CAS  Google Scholar 

  43. A. Badamian, C. Iwamoto, S. Sato, and S. Tashiro: Metals., 2019, vol. 9, p. 532.

    Article  CAS  Google Scholar 

  44. L. Zhou, J. Min, W. He, Y. Huang, and X. Song: J. Manuf. Process.., 2018, vol. 33, pp. 64–73.

    Article  Google Scholar 

  45. C.Q. Zhang, J.D. Robson, O. Ciuca, and P.B. Prangnell: Mater. Charact., 2014, vol. 97, pp. 83–91.

    Article  CAS  Google Scholar 

  46. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed. Elsevier Ltd., Amsterdam, 2004.

    Google Scholar 

  47. M.S. Oh, J.-Y. Lee, and J.K. Park: Metall. Mater. Trans. A., 2004, vol. 35A, pp. 3071–77.

    Article  CAS  Google Scholar 

  48. Y.-C. Chen, D. Bakavos, A. Gholinia, and P.B. Prangnell: Acta Mater., 2012, vol. 60, pp. 2816–28.

    Article  CAS  Google Scholar 

  49. I.E. Gunduz, T. Ando, E. Shattuck, P.Y. Wong, and C.C. Doumanidis: Scripta Mater., 2005, vol. 52, pp. 939–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was accomplished in terms of state assignment of the Institute for Metals Superplasticity Problems of the Russian Academy of Sciences financed by the Ministry of Science and Higher Education of Russia. Electron microscopic studies and mechanical tests were carried out on the facilities of shared services center of IMSP RAS “Structural and Physical-Mechanical Studies of Materials”.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Mukhametgalina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 1, 2021; accepted December 20, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhametgalina, A.A., Murzinova, M.A. & Nazarov, A.A. Weld Quality and Microstructure Development in Ultrasonically Welded Titanium Joints. Metall Mater Trans A 53, 1119–1131 (2022). https://doi.org/10.1007/s11661-021-06583-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06583-0

Navigation