Skip to main content
Log in

Specimen Size Effect of Tensile Behavior of Al-4.0 wt pct Cu Alloy Sheets: Effects of Precipitates and Cyclic Predeformation

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Aging hardened Al-4.0 wt pct Cu alloy sheets with thicknesses (t) of 0.15 to 1.0 mm were selected to explore the effects of the second phase and its interaction with the dislocations produced by cyclic predeformation on the extrinsic size effect of mechanical behavior. The dependence of tensile properties on t and the effect of cyclic predeformation were systematically studied. The results showed that with the decrease of t from 1.0 to 0.3 mm, the ultimate tensile strength σUTS of Al-4.0 wt pct Cu alloy sheets reduced continuously, but the uniform strain ε first increased and then decreased. When t was decreased to 0.15 mm, there was no noticeable change in σUTS, but a slight increase in ε compared with the cases at t = 0.3 mm was observed, which is mainly related to the interaction between precipitates and dislocations. In contrast, a t-dependent yield strength σYS was not observed. A cyclic predeformation to 20 pct Nf (Nf: fatigue life) cycles promoted a notable increase in the strengths of various-t sheets, and a t-independent strength was found for the t in the range of 0.6-1.0 mm, which originates from the combined effects of the difficult initiation of dislocation sources in the material interior after predeformation, the enhanced interaction between the dislocations and precipitates and the strengthening of grains’ surface layer caused by cyclic predeformation. Therefore, it is deduced that the precipitates inhibit the continuous decrease in the strength of thin sheets, and the cyclic predeformation and precipitatites greatly improve the strength and delay the occurrence of extrinsic size effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials, 2nd ed. Cambridge University Press, Cambridge, 2016.

    Google Scholar 

  2. A. Dobromyslov and N. Taluts: High Press. Res., 2013, vol. 33, pp. 16–21.

    Google Scholar 

  3. G.C. Weatherly and R.B. Nicholson: Philos. Mag., 1968, vol. 17, pp. 801–31.

    Article  CAS  Google Scholar 

  4. B. Milligan, D. Ma, L. Allard, A. Clarke, and A. Shyam: Acta Mater., 2021, vol. 205, p. 116577.

    Article  CAS  Google Scholar 

  5. G. Esteban-Manzanares, E. Martínez, J. Segurado, L. Capolungo, and J. LLorca: Acta Mater., 2019, vol. 162, pp. 189–201.

    Article  CAS  Google Scholar 

  6. B. Bellón, S. Haouala, and J. LLorca: Acta Mater., 2020, vol. 194, pp. 207–23.

    Article  Google Scholar 

  7. W.W. Sun, Y.M. Zhu, R. Marceau, L.Y. Wang, Q. Zhang, X. Gao, and C. Hutchinson: Science., 2019, vol. 363, pp. 972–5.

    Article  CAS  Google Scholar 

  8. W.Z. Han, Y. Chen, A. Vinogradov, and C.R. Hutchinson: Mater. Sci. Eng. A., 2011, vol. 528, pp. 7410–6.

    Article  CAS  Google Scholar 

  9. A. Molotnikov, R. Lapovok, C.H.J. Davies, W. Cao, and Y. Estrin: Scr. Mater., 2008, vol. 59, pp. 1182–5.

    Article  CAS  Google Scholar 

  10. G. Simons, C. Weippert, J. Dual, and J. Villain: Mater. Sci. Eng. A., 2006, vol. 416, pp. 290–9.

    Article  Google Scholar 

  11. U. Engel and R. Eckstein: J. Mater. Process. Technol., 2002, vol. 125–126, pp. 35–44.

    Article  Google Scholar 

  12. C.S. Han, A. Hartmaier, H.J. Gao, and Y.G. Huang: Mater. Sci. Eng. A., 2006, vol. 415, pp. 225–33.

    Article  Google Scholar 

  13. C. Keller, E. Hug, and D. Chaterigner: Mater. Sci. Eng. A., 2009, vol. 500, pp. 207–15.

    Article  Google Scholar 

  14. S.M. Liang, H.M. Ji, and X.W. Li: J. Mater. Sci. Technol., 2020, vol. 44, pp. 1–8.

    Article  Google Scholar 

  15. M. Geiger, F. Vollertsen, and R. Kals: CIRP Ann., 1996, vol. 45, pp. 277–82.

    Article  Google Scholar 

  16. S. Miyazaki, K. Shibata, and H. Fujita: Acta Metall., 1979, vol. 27, pp. 855–62.

    Article  CAS  Google Scholar 

  17. E. Hug and C. Keller: Metal. Mater. Trans. A., 2010, vol. 41A, pp. 2498–506.

    Article  CAS  Google Scholar 

  18. M. Lederer, V. Gröger, G. Khatibi, and B. Weiss: Mater. Sci. Eng. A., 2010, vol. 527, pp. 590–9.

    Article  Google Scholar 

  19. K.S. Ng and A.H.W. Ngan: Acta Mater., 2009, vol. 57, pp. 4902–10.

    Article  CAS  Google Scholar 

  20. D. Kiener, P. Hosemann, S.A. Maloy, and A.M. Minor: Nat. Mater., 2011, vol. 10, pp. 608–13.

    Article  CAS  Google Scholar 

  21. Y. Yan, M. Lu, W.W. Guo, and X.W. Li: Mater. Sci. Eng. A., 2014, vol. 600, pp. 99–107.

    Article  CAS  Google Scholar 

  22. H. Bei, S. Shim, G.M. Pharr, and E.P. George: Acta Mater., 2008, vol. 56, pp. 4762–70.

    Article  CAS  Google Scholar 

  23. S.K. Son, M. Takeda, M. Mitome, Y. Bando, and T. Endo: Mater. Lett., 2005, vol. 59, pp. 629–32.

    Article  CAS  Google Scholar 

  24. T. Broom, J.H. Molineux, and V.N. Whittaker: J. Inst. Met., 1956, vol. 84, pp. 357–65.

    CAS  Google Scholar 

  25. R. Lumley, R.G. O’Donnel, I.J. Polmear, and J.R. Griffiths: Mater. Forum., 2005, vol. 29, pp. 256–61.

    CAS  Google Scholar 

  26. H.D. Chandler and J.V. Bee: Acta Metall., 1987, vol. 35, pp. 2503–10.

    Article  CAS  Google Scholar 

  27. A. Farrow and C. Laird: Philos. Mag., 2010, vol. 90, pp. 3549–66.

    Article  CAS  Google Scholar 

  28. J. Xu, X.C. Zhu, D.B. Shan, B. Guo, and T.G. Langdon: Mater. Sci. Eng. A., 2015, vol. 646, pp. 207–17.

    Article  CAS  Google Scholar 

  29. C.Y. Dai, J. Xu, B. Zhang, and G.P. Zhang: Philos. Mag. Lett., 2013, vol. 93, pp. 531–40.

    Article  CAS  Google Scholar 

  30. J. Xu, J.W. Li, L. Shi, D.B. Shan, and B. Guo: Mater. Charact., 2015, vol. 109, pp. 181–8.

    Article  Google Scholar 

  31. B. Yang, C. Motz, M. Rester, and G. Dehm: Philos. Mag., 2012, vol. 92, pp. 3243–56.

    Article  CAS  Google Scholar 

  32. Y. Yan, C.J. Qi, D. Han, H.M. Ji, M.Q. Zhang, and X.W. Li: Metall. Mater. Trans. A., 2017, vol. 48, pp. 678–84.

    Article  CAS  Google Scholar 

  33. K. Mariappan, V. Shankar, R. Sandhya, M.D. Mathew, and A.K. Bhaduri: Metall. Mater. Trans. A., 2015, vol. 46A, pp. 989–1003.

    Article  Google Scholar 

  34. X.W. Li, X.M. Wang, W.W. Guo, C.J. Qi, and Y. Yan: Metall. Mater. Trans. A., 2013, vol. 44A, pp. 1631–5.

    Article  Google Scholar 

  35. H. Liu, Y.P. Gao, L. Qi, Y.Z. Wang, and J.F. Nie: Metall. Mater. Trans. A., 2015, vol. 46A, pp. 3287–301.

    Article  Google Scholar 

  36. J.F. Nie and B.C. Muddle: Acta Mater., 2008, vol. 56, pp. 3490–501.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 51871048 and 52171108, and by the Open Foundation of Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, China, under Grant No. ATM20170001. Thanks to Dr. Wei Wang of Institute of Metals, Chinese Academay of Sciences for his assistance in the preparation of alloys. Prof. X.W. Li is grateful for these supports.

Conflict of interest

On behalf of all authors, the corresponding auther states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 7, 2021, accepted October 27, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Wang, T.D., Song, Q.S. et al. Specimen Size Effect of Tensile Behavior of Al-4.0 wt pct Cu Alloy Sheets: Effects of Precipitates and Cyclic Predeformation. Metall Mater Trans A 53, 290–298 (2022). https://doi.org/10.1007/s11661-021-06522-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06522-z

Navigation