Skip to main content
Log in

Development of the Cube Component \( \left( {\left\{ 001 \right\}\left\langle {100} \right\rangle } \right) \) During Plane Strain Compression of Copper and Its Importance in Recrystallization Nucleation

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The origin of cube texture during recrystallization of medium to high stacking-fault energy FCC metals has been debated for several decades. However, the evolution of cube component during deformation is not studied well and hence, it is still unclear what are the favorable nucleation sites for the cube oriented recrystallized grains. To resolve this issue, we applied a full field crystal plasticity model utilizing a dislocation density based constitutive theory for the simulation of plane strain compression of polycrystalline copper. Simulation results reveal that the grains with initially cube orientation retained a small fraction of the cube component in the deformed state, whereas, some of the grains with initially non-cube orientations developed the cube component during the deformation. For strain up to 0.46, non-cube grains which are within 10 to 20 deg from the ideal cube orientation showed the highest tendency to develop the cube component during deformation. However, the cube component developed during the deformation was unstable and rotated away from the cube orientation with further deformation. With increasing strain up to 1.38, some of the grains with higher angular deviation from the ideal cube orientation also developed the cube component. No particular axis preference was observed for the non-cube grains, rather, the evolution of the cube component becomes dynamic at larger strain. Analysis of the disorientation angle and the dislocation density difference with the neighboring locations shows that the cube component developed during the deformation can play a significant role during nucleation. These findings will be useful for controlling the cube texture in FCC metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. O. Engler, J. Hirsch, Mater. Sci. Eng. A 336(1–2), 249 (2002)

    Article  Google Scholar 

  2. H. Inoue, T. Takasugi, Mater. Trans. 48(8), 2014 (2007)

    Article  CAS  Google Scholar 

  3. J.J. Sidor, Q. Xie, P. Chakravarty, G. Pal, I.O.P. Conf, Ser. Mater. Sci. Eng. 1121, 012046 (2021)

    Article  CAS  Google Scholar 

  4. V.S. Sarma, J. Eickemeyer, A. Singh, L. Schultz, B. Holzapfel, Acta Mater. 51(16), 4919 (2003)

    Article  CAS  Google Scholar 

  5. P.P. Bhattacharjee, R.K. Ray, A. Upadhyaya, J. Mater. Sci. 42(6), 1984 (2007)

    Article  CAS  Google Scholar 

  6. Y.V. Khlebnikova, D. Rodionov, I. Gervas’eva, T. Suaridze, V. Kazantsev, Tech. Phys. Lett. 41(4), 341 (2015)

    Article  CAS  Google Scholar 

  7. A. Ridha, W. Hutchinson, Acta Metall. 30(10), 1929 (1982)

    Article  CAS  Google Scholar 

  8. J. Hjelen, R. Ørsund, E. Nes, Acta Metall. Mater. 39(7), 1377 (1991)

    Article  CAS  Google Scholar 

  9. B. Duggan, K. Lücke, G. Köhlhoff, C. Lee, Acta Metall. Mater. 41(6), 1921 (1993)

    Article  CAS  Google Scholar 

  10. R.D. Doherty, L.C. Chen, I. Samajdar, Mater. Sci. Eng. A 257(1), 18 (1998)

    Article  Google Scholar 

  11. I. Samajdar, B. Verlinden, L. Rabet, P. Van Houtte, Mater. Sci. Eng. A 266(1–2), 146 (1999)

    Article  Google Scholar 

  12. K. Lücke, Can. Metall. Q. 13(1), 261 (1974)

    Article  Google Scholar 

  13. D.J. Jensen, Acta Metall. Mater. 43(11), 4117 (1995)

    Article  CAS  Google Scholar 

  14. R.D. Doherty, Prog. Mater. Sci. 42(1–4), 39 (1997)

    Article  CAS  Google Scholar 

  15. F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, Amsterdam, 2012)

    Google Scholar 

  16. R. Doherty, D. Hughes, F. Humphreys, J.J. Jonas, D.J. Jensen, M. Kassner, W. King, T. McNelley, H. McQueen, A. Rollett, Mater. Sci. Eng. A 238(2), 219 (1997)

    Article  Google Scholar 

  17. M.H. Alvi, S. Cheong, J. Suni, H. Weiland, A. Rollett, Acta Mater. 56(13), 3098 (2008)

    Article  CAS  Google Scholar 

  18. A. Akef, J. Driver, Mater. Sci. Eng. A 132, 245 (1991)

    Article  Google Scholar 

  19. Q. Liu, N. Hansen, C. Maurice, J. Driver, Metall. Mater. Trans. A 29A(9), 2333 (1998)

    Article  CAS  Google Scholar 

  20. I. Dillamore, H. Katoh, Metal Sci. 8(1), 73 (1974)

    Article  CAS  Google Scholar 

  21. F. Basson, J. Driver, Acta Mater. 48(9), 2101 (2000)

    Article  CAS  Google Scholar 

  22. J. Wert, Q. Liu, N. Hansen, Acta Mater. 45(6), 2565 (1997)

    Article  CAS  Google Scholar 

  23. T. Kamijo, A. Fujiwara, Y. Yoneda, H. Fukutomi, Acta Metall. Mater. 39(8), 1947 (1991)

    Article  CAS  Google Scholar 

  24. T. Kamijo, H. Adachihara, H. Fukutomi, Acta Metall. Mater. 41(3), 975 (1993)

    Article  CAS  Google Scholar 

  25. R. Quey, P. Dawson, J. Driver, J. Mech. Phys. Solids 60(3), 509 (2012)

    Article  CAS  Google Scholar 

  26. A. Albou, R. Quey, C. Maurice, S. Raveendra, I. Samajdar, P.R. Dawson, J.H. Driver, Mater. Sci. Forum 702, 385–390 (2012)

    Google Scholar 

  27. I. Samajdar, R.D. Doherty, Scripta Metallurgica et Materialia 32, 6 (1995)

    Article  Google Scholar 

  28. S. Zaefferer, T. Baudin, R. Penelle, Acta Mater. 49(6), 1105 (2001)

    Article  CAS  Google Scholar 

  29. A. Albou, S. Raveendra, P. Karajagikar, I. Samajdar, C. Maurice, J.H. Driver, Scripta Mater. 62(7), 469 (2010)

    Article  CAS  Google Scholar 

  30. O. Sukhopar, G. Gottstein, Mater. Sci. Forum 794, 1245–1250 (2014)

    Article  Google Scholar 

  31. A. Beaudoin Jr., H. Mecking, U. Kocks, Philos. Mag. A 73(6), 1503 (1996)

    Article  CAS  Google Scholar 

  32. J.J. Sidor, R.H. Petrov, L.A. Kestens, Acta Mater. 59(14), 5735 (2011)

    Article  CAS  Google Scholar 

  33. K. Adam, D. Zöllner, D.P. Field, Modell. Simul. Mater. Sci. Eng. 26(3), 035011 (2018)

    Article  Google Scholar 

  34. M. Zecevic, R.A. Lebensohn, R.J. McCabe, M. Knezevic, Acta Mater. 164, 530 (2019)

    Article  CAS  Google Scholar 

  35. G. Falkinger, P. Simon, S. Mitsche, Metall. Mater. Trans. A 51A(6), 3066 (2020)

    Article  Google Scholar 

  36. C.S. Patil, S. Chakraborty, S.R. Niezgoda, Int. J. Plast. 147, 103099 (2021)

    Article  Google Scholar 

  37. R.A. Lebensohn, A.K. Kanjarla, P. Eisenlohr, Int. J. Plast. 32, 59 (2012)

    Article  Google Scholar 

  38. R.A. Lebensohn, R. Brenner, O. Castelnau, A.D. Rollett, Acta Mater. 56(15), 3914 (2008)

    Article  CAS  Google Scholar 

  39. M. Diehl, D. An, P. Shanthraj, S. Zaefferer, F. Roters, D. Raabe, Phys. Mesomech. 20(3), 311 (2017)

    Article  Google Scholar 

  40. C. Slone, S. Chakraborty, J. Miao, E.P. George, M.J. Mills, S. Niezgoda, Acta Mater. 158, 38 (2018)

    Article  CAS  Google Scholar 

  41. F. Roters, M. Diehl, P. Shanthraj, P. Eisenlohr, C. Reuber, S.L. Wong, T. Maiti, A. Ebrahimi, T. Hochrainer, H.O. Fabritius et al., Comput. Mater. Sci. 158, 420 (2019)

    Article  CAS  Google Scholar 

  42. R.A. Lebensohn, A.D. Rollett, Comput. Mater. Sci. 173, 109336 (2020)

    Article  Google Scholar 

  43. E. Orowan, Z. Phys. 89(9–10), 605 (1934)

    Article  Google Scholar 

  44. H. Conrad, JOM 16(7), 582 (1964)

    Article  CAS  Google Scholar 

  45. U.F. Kocks, A. AS, A. MF, (1975)

  46. A. Ma, F. Roters, Acta Mater. 52(12), 3603 (2004)

    Article  CAS  Google Scholar 

  47. A. Ma, F. Roters, D. Raabe, Acta Mater. 54(8), 2169 (2006)

    Article  CAS  Google Scholar 

  48. M. Ashby, Philos. Mag. 21(170), 399 (1970)

    Article  CAS  Google Scholar 

  49. P. Jackson, Z. Basinski, Can. J. Phys. 45(2), 707 (1967)

    Article  CAS  Google Scholar 

  50. P. Franciosi, M. Berveiller, A. Zaoui, Acta Metall. 28(3), 273 (1980)

    Article  CAS  Google Scholar 

  51. Z. Basinski, Discuss. Faraday Soc. 38, 93 (1964)

    Article  Google Scholar 

  52. B. Devincre, L. Kubin, T. Hoc, Scripta Mater. 57(10), 905 (2007)

    Article  CAS  Google Scholar 

  53. T. Ohashi, Philos. Mag. 98(25), 2275 (2018)

    Article  CAS  Google Scholar 

  54. T. Hochrainer, B. Weger, J. Mech. Phys. Solids 141, 103957 (2020)

    Article  Google Scholar 

  55. R. Balluffi, Physica Status Solidi (b) 42(1), 11 (1970)

    Article  CAS  Google Scholar 

  56. A. Cuitino, M. Ortiz, Acta Mater. 44(2), 427 (1996)

    Article  CAS  Google Scholar 

  57. P.M. Anderson, J.P. Hirth, J. Lothe, Theory of Dislocations (Cambridge University Press, Cambridge, 2017)

    Google Scholar 

  58. C. Kords, On the role of dislocation transport in the constitutive description of crystal plasticity. Ph.D. thesis (2013)

  59. R.W. Balluffi, S.M. Allen, W.C. Carter, Kinetics of Materials (Wiley, Hoboken, 2005)

    Book  Google Scholar 

  60. H. Bowden, R. Balluffi, Philos. Magn. 19(161), 1001 (1969)

    Article  CAS  Google Scholar 

  61. E. Oren, C.L. Bauer, Acta Metall. 15(5), 773 (1967)

    Article  CAS  Google Scholar 

  62. M. Wuttig, H. Birnbaum, Phys. Rev. 147(2), 495 (1966)

    Article  CAS  Google Scholar 

  63. M.A. Groeber, M.A. Jackson, Integr. Mater. Manuf. Innov. 3(1), 56 (2014)

    Article  Google Scholar 

  64. F.X. Lin, W. Pantleon, T. Leffers, D.J. Jensen, Mater. Sci. Forum 702, 398–401 (2012)

    Google Scholar 

  65. F. Lin, Recrystallization of Deformed Copper: Kinetics and Microstructural Evolution (Technical University of Denmark, Lyngby, 2013)

    Google Scholar 

  66. C.A. Bronkhorst, Plastic deformation and crystallographic texture evolution in face-centered cubic metals. Ph.D. thesis, Massachusetts Institute of Technology (1991)

  67. W. Overton Jr., J. Gaffney, Phys. Rev. 98(4), 969 (1955)

    Article  CAS  Google Scholar 

  68. H. Ledbetter, E. Naimon, J. Phys. Chem. Ref. Data 3(4), 897 (1974)

    Article  CAS  Google Scholar 

  69. F. Bachmann, R. Hielscher, H. Schaeben, Solid State Phenomena 160, 63–68 (2010)

    Article  CAS  Google Scholar 

  70. U.F. Kocks, C.N. Tomé, H.R. Wenk, Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  71. T. Leffers, R. Ray, Prog. Mater. Sci. 54(3), 351 (2009)

    Article  CAS  Google Scholar 

  72. N. Gurao, S. Sethuraman, S. Suwas, Mater. Sci. Eng. A 528(25–26), 7739 (2011)

    Article  CAS  Google Scholar 

  73. J. Vallin, M. Mongy, K. Salama, O. Beckman, J. Appl. Phys. 35(6), 1825 (1964)

    Article  CAS  Google Scholar 

  74. C. Maurice, J. Driver, Acta Metall. Mater. 41(6), 1653 (1993)

    Article  CAS  Google Scholar 

  75. C. Maurice, J. Driver, Acta Mater. 45(11), 4627 (1997)

    Article  CAS  Google Scholar 

  76. J.J. Sidor, L.A. Kestens, Scripta Mater. 68(5), 273 (2013)

    Article  CAS  Google Scholar 

  77. O. Engler, V. Randle, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping (CRC Press, Boca Raton, 2009)

    Book  Google Scholar 

  78. P.R. Rios, F. Siciliano Jr., H.R.Z. Sandim, R.L. Plaut, A.F. Padilha, Mater. Res. 8(3), 225 (2005)

    Article  CAS  Google Scholar 

  79. P.A. Beck, P.R. Sperry, J. Appl. Phys. 21(2), 150 (1950)

    Article  CAS  Google Scholar 

  80. F. Humphreys, Acta Mater. 45(10), 4231 (1997)

    Article  CAS  Google Scholar 

  81. E.A. Holm, M.A. Miodownik, A.D. Rollett, Acta Mater. 51(9), 2701 (2003)

    Article  CAS  Google Scholar 

  82. V.M. Miller, A.E. Johnson, C.J. Torbet, T.M. Pollock, Metall. Mater. Trans. A 47A(4), 1566 (2016)

    Article  Google Scholar 

  83. K. Traka, K. Sedighiani, C. Bos, J.G. Lopez, K. Angenendt, D. Raabe, J. Sietsma, Comput. Mater. Sci. 198, 110643 (2021)

    Article  CAS  Google Scholar 

  84. O. Engler, Mater. Sci. Technol. 12(10), 859 (1996)

    Article  CAS  Google Scholar 

  85. A. Després, M. Greenwood, C. Sinclair, Acta Mater. 199, 116 (2020)

    Article  Google Scholar 

  86. R. Quey, G.H. Fan, Y. Zhang, D.J. Jensen, Acta Mater. 210, 116808 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to acknowledge the National Science Foundation, Division of Civil, Mechanical and Manufacturing Innovation for their support under the Grant No. CMMI-1662646. SC and CSP want to acknowledge the Simulation Innovation and Modeling Center, The Ohio State University and Ohio Supercomputer Center for providing computational resources. The authors also like to thank Prof. Anthony Rollett and Prof. Roger Doherty for valuable discussions.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Niezgoda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 17, 2021, accepted October 23, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 898 kb)

Appendix

Appendix

See Fig. A1, Tables A1 and A2.

Table A1 Miller Indices and Euler Angles of the Main Texture Components[65,70]
Table A2 Orientation of Grain G1, G2 and G3 and Their Corresponding Orientations in the Experiment
Fig. A1
figure 16

ODF corresponding to the non-cube grains which developed the cube component at strain of \(\epsilon _{vM}\) = 1.38 in RVE M1, is presented in 2D sections of reduced Euler space. The \(\beta \)-fiber coordinates, as defined in the work of Sidor and Kestens,[76] are also shown using star shaped markers. Very low intensity around the \(\beta \)-fiber is clearly visible

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Patil, C.S. & Niezgoda, S.R. Development of the Cube Component \( \left( {\left\{ 001 \right\}\left\langle {100} \right\rangle } \right) \) During Plane Strain Compression of Copper and Its Importance in Recrystallization Nucleation. Metall Mater Trans A 53, 503–522 (2022). https://doi.org/10.1007/s11661-021-06513-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06513-0

Navigation