Skip to main content
Log in

Viscoplastic Self-consistent Modeling of the Through-Thickness Texture of a Hot-Rolled Al-Mg-Si Plate

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The through-thickness texture of an industrial hot-rolled Al-Mg-Si alloy plate is investigated both experimentally and numerically. The texture has been determined continuously from the plate center to the surface with large-scale electron backscatter diffraction scans. In accordance with literature results, a stable cube component and a strong brass component were found in the center, while the rotated cube component dominates the texture outside of the center region. A viscoplastic self-consistent polycrystal model including non-octahedral slip and grain shape evolution is shown to provide very good numerical predictions of the hot rolling texture. It captures the stability of the cube component and the gradients of the shear and brass component. However, it overestimates the intensity of the rotated cube component and wrongly predicts a stable goss component across the plate thickness. The calculation of deformation histories, which serve as boundary conditions for the polycrystal model, is presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Hirsch and T. Al-Samman: Acta Mater., vol. 61, 2016, pp. 818-843.

    Google Scholar 

  2. I.L. Dillamore and W.T. Roberts: Metall. Rev., 1965, vol. 10., pp. 271-380.

    CAS  Google Scholar 

  3. N. Hansen and H. Mecking: in ICOTOM 4, G.J. Davies, I.L. Dillamore, R.C. Hudd and J.S. Kallend, eds., The Metals Society, London, 1975, pp. 34–46.

  4. H.O. Asbeck and H. Mecking: Mater. Sci. Eng., 1978, vol. 34, pp. 111-19.

    CAS  Google Scholar 

  5. W. Truszkowski, J. Król and B. Major: Metall. Trans. A, 1980, vol. 11A, pp. 749-58.

    CAS  Google Scholar 

  6. O.V. Mishin, B. Bay and D. Juulensen: Metall. Mater. Trans. A, 2000, 31A, 1653-62.

    CAS  Google Scholar 

  7. I.L. Dillamore and H. Katoh: Met. Sci., 1975, vol. 8, pp. 73-83.

    Google Scholar 

  8. C.S. Lee, R.E. Smallman and B.J. Duggan: Mater. Sci. Technol., 1994, vol. 10, pp. 862-8.

    CAS  Google Scholar 

  9. O. Sukhopar and G. Gottstein: Int. J. Mater. Res., 2010, vol. 107, pp. 980-7.

    Google Scholar 

  10. A. Albou, S. Raavendra, P. Karajagikar, I. Samajdar, C. Maurice and J.H. Driver: Scripta Mater.. 2010, vol. 62, pp. 469-72.

    CAS  Google Scholar 

  11. B. Bacroix and J.J. Jonas: Texture Microstruct., 1988, 8, 267-311.

    Google Scholar 

  12. C. Maurice and J. Driver: Acta Metall. Mater., 1993, vol. 41, pp. 1653-64.

    CAS  Google Scholar 

  13. C. Maurice and J. Driver, Acta Mater., 1997, vol. 45, pp. 4627-38.

    CAS  Google Scholar 

  14. C. Maurice and J. Driver, Acta Mater., 1997, vol. 45, pp. pp. 4639-49.

    CAS  Google Scholar 

  15. D. Caillard, J.-L. Martin: Int. J. Mater. Res., 2010, vol. 100, pp. 1403-10.

    Google Scholar 

  16. P.A. Hollinshead and T. Sheppard: Metall. Mater. Trans. A, 1989, vol. 20A, pp. 1495-507.

    CAS  Google Scholar 

  17. H. Weiland and J. Hirsch: 1991, Texture Microstruct., 14, 647-52.

    Google Scholar 

  18. Q. Zhao, Z. Liu, S. Li, T. Huang, P. Xia and L. Lu: 2017, J. Alloy. Compd., 691, 786-99.

    CAS  Google Scholar 

  19. J.H. Driver, M.-C. Theyssier and C. Maurice: Mater. Sci. Technol., 1996, vol. 12, pp. 851-8.

    CAS  Google Scholar 

  20. S. Raveendra, H. Paranjape, S. Mishra, H. Weiland, R.D. Doherty and I. Samajdar: Metall. Mater. Trans A, 2009, vol. 40A, pp.2220-229.

    CAS  Google Scholar 

  21. I. Samajdar, P. Ratchev, B. Verlinden and E. Aernoudt: Acta Mater., 2001, vol. 49, pp. 1759-69.

    CAS  Google Scholar 

  22. W.C. Liu and J.G. Morris: Scripta Mater., 2005, vol. 52, pp. 1317-21.

    CAS  Google Scholar 

  23. Q. Contrepois, C. Maurice and J.H. Driver: Mat. Sci. Eng. A, 2010, vol. 527, pp. 7305-12.

    Google Scholar 

  24. M. Arzaghi, B. Beausir, L.S. Tóth: Acta Mater., vol. 57, 2009, pp. 2440-53.

    CAS  Google Scholar 

  25. S.V. Danilov, I.A. Mustaeva, M.A. Golovnin: Solid state phenom., vol. 265, 2017, pp. 999-1004.

    Google Scholar 

  26. J. Hirsch: Virtual fabrication of aluminum products: Microstructural modeling in industrial aluminum production, 2006, Wiley-VCH, Weinheim.

    Google Scholar 

  27. J. Hirsch: Mater. Sci. Forum, 2006, vols. 519-521, pp. 15-24.

    Google Scholar 

  28. J. Hirsch and K. Lcke: Acta metall., 1988, vol. 36, pp.2883-904.

    CAS  Google Scholar 

  29. O. Engler, M. Crumbach and S. Li: Acta mater., 2005, vol.53, pp. 2241-57.

    CAS  Google Scholar 

  30. P. Eisenlohr, D. D. Tjahjanto, T. Hochrainer, F. Roters and D. Raabe: Int. J. Mater. Res., 2009, vol. 100, pp. 500-9.

    CAS  Google Scholar 

  31. P. van Houtte, S. Li, M. Seefeldt and L. Delannay: Int. J. Plasticity, 2005, vol. 21, pp. 589-624.

    Google Scholar 

  32. D. Raabe: Acta Metall. Mater., 1995, vol. 43, pp. 1023-8.

    CAS  Google Scholar 

  33. M. Zezevic, R.A. Lebensohn, R.J. Cabe. M. : Int. J. Plasticity, vol. 109, 2018, pp. 193-211.

    Google Scholar 

  34. C.S. Lee and B.J. Duggan: Metall. Trans. A, 1991, vol. 22A, pp. 2637-43.

    CAS  Google Scholar 

  35. O. Engler, M.Y. Huh and C.N. Tomé: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2299-315.

    CAS  Google Scholar 

  36. K. Decroos, J. Sidor and M. Seefeldt: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 948-61.

    Google Scholar 

  37. F. Pérocheau and J.H. Driver: Int. J. Plasticity, 2000, vol. 16, pp. 73-89.

    Google Scholar 

  38. R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater., vol. 41, 1993, pp. 2611-24.

    CAS  Google Scholar 

  39. L.A.I. Kestens and H. Pirzaghi: Mater. Sci. Technol., 2016, vol. 32, pp. 1303-15.

    CAS  Google Scholar 

  40. J.A. Österreicher, F. Grabner, A. Schiffl, S. Schwarz and G.R. Bourret: Mater. Charact., 2018, vol. 138, pp. 145-53.

    Google Scholar 

  41. F. Bachmann, R. Hielscher and H. Schaeben: Solid State Phenom. 2010, vol.160, pp. 63-8.

    CAS  Google Scholar 

  42. P. Simon and G. Falkinger: \(11^{th}\) European LS-Dyna conference, 2017, Salzburg.

  43. E. de Souzaneto, D. Peric and D.R.J. Owen, Computational Methods for Plasticity. Wiley, Chichester (2008).

    Google Scholar 

  44. K. Zhang, K. Marthinsen, B. Holmedal, T. Aukrust and A. Segatori: Mat. Sci. Eng. A, vol. 722, 2018, 20-9.

    CAS  Google Scholar 

  45. R.A. Lebensohn and C.N. Tomé: VPSC manual, Version 7c, 2009.

  46. Y.-N. Kwon, Y.S. Lee, J.H. Lee: J. Mater. Process. Technol., 2007, vols. 187–188, pp. 533-6.

    Google Scholar 

  47. O. Engler, J. Hirsch: Mat. Sci. Eng. A, 2002, vol. 336, pp. 249-62.

    Google Scholar 

  48. F. Pérocheau and J.H. Driver: Int. J. Plasticity, 2002, vol. 18, pp. 185-202.

    Google Scholar 

  49. R. Quey, P.R. Dawson and J.H. Driver: J. Mech. Phys. Solids, vol. 60, 2012, pp.509-24.

    CAS  Google Scholar 

  50. C.G. Kang, H.G. Kang, H.C. Kim, M.Y. Huh and H.G. Suk: J. Mater. Process. Technol., 2007, vol. 187-188, pp.542-5.

    Google Scholar 

  51. C.-H. Choi, J.-W- Kwon, K.H. Oh and D.N. Lee: Acta mater., 1997, vol. 45, pp. 5119-28.

    CAS  Google Scholar 

  52. B. Hum, H. W. Colquhoun and J.G. Lenard: J. Mater. Process. Technol., vol. 60, 1996, pp. 331-8.

    Google Scholar 

  53. J.W. Yoon, F. Barlat, K. Chung, F. Pourboghrat and D.Y. Yang: Int. J. Plasticity, vol. 16, 2000, pp. 1075-104.

    CAS  Google Scholar 

  54. M. Zezevic and M. Knezevic: Comput. Method. Appl. M., vol. 341, 2018, pp. 888-916.

    Google Scholar 

  55. J. Segurado, R.A. Lebensohn, J. Llorca and C.N. Tomé: Int. J. Plasticity, vol. 28, 2012, pp. 124-40.

    CAS  Google Scholar 

  56. B. Plunkett, R.A. Lebensohn, O. Cazacu and F. Barlat: Acta Mater., vol. 54, 2006, pp. 4159-69.

    CAS  Google Scholar 

  57. M. Zezevic, R.J. McCabe and M. Knezevic: Int. J. Plasticity, 2015, vol. 70, pp.151-65.

    Google Scholar 

  58. D. Raabe, Z. Zhao, S.J. Park, F. Roters: Acta Mater., vol. 50, 2001, pp. 421-40.

    Google Scholar 

  59. L. Delannay, O.V. Mishin, D. Juul Jensen, P. van Houtte: Acta Mater., vol. 49, 2001, pp. 2441-451.

    CAS  Google Scholar 

Download references

Acknowledgments

G.F. would like to thank Yi-Chin Yang, Franz Roters, and Dierk Raabe from the Max-Planck Institute für Eisenforschung in Düsseldorf, Germany for helpful discussions.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Falkinger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 23, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falkinger, G., Simon, P. & Mitsche, S. Viscoplastic Self-consistent Modeling of the Through-Thickness Texture of a Hot-Rolled Al-Mg-Si Plate. Metall Mater Trans A 51, 3066–3075 (2020). https://doi.org/10.1007/s11661-020-05743-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05743-y

Navigation