Skip to main content
Log in

Density and Thermal Expansion of High Purity Cobalt over the Temperature Range from 140 K to 2073 K

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The results of an experimental study of the density and thermal expansion of cobalt over the temperature range 140 K to 2073 K are presented. The measurements were carried out by the dilatometer and gamma-ray attenuation methods with errors of 0.05 to 0.26 pct in terms of density and 0.7 to 7.9 pct in terms of thermal expansion coefficients. The relative density changes were determined during allotropic transformation (0.28 ± 0.04) pct and during melting of cobalt (4.56 ± 0.15) pct. The behavior of the thermal expansion coefficient in the vicinity of the Curie point was investigated. Approximation dependences on temperature for the investigated properties were obtained, and reference tables were calculated. A review of the existing literature data on the volumetric properties of cobalt and comparison with the results of this work were carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

εCo:

Cobalt phase with a hexagonal close-packed lattice

αCo:

Cobalt phase with a face-centered cubic lattice

T :

Temperature (K)

T r :

Room temperature (K)

T t :

Temperature of the polymorphic εCo–αCo transformation (K)

T f :

Melting temperature (K)

ρ :

Density (kg/m3)

ρ r :

Density of the sample at room temperature (kg/m3)

ρ c :

Density of the crystalline sample (kg/m3)

ρ m :

Density of the liquid sample (kg/m3)

δρ t :

Relative density change during the polymorphic εCo–αCo transformation (pct)

ρ hcp :

Density of the phase with a hexagonal close-packed lattice (kg/m3)

ρ fcc :

Density of the phase with a face-centered cubic lattice (kg/m3)

δρ f :

Relative density change during the solid–liquid phase transition (pct)

δρ c :

Relative deviation of the published data on the density of solid cobalt from the dependence ρc(T) constructed in this work (pct)

δρ m :

Relative deviation of the published data on the density of liquid cobalt from the dependence ρm(T) constructed in this work (pct)

L :

Sample length (m)

ε :

Relative expansion of the sample

ε hcp :

Relative expansion of the sample with a hexagonal close-packed lattice

ε fcc :

Relative expansion of the sample with a face-centered cubic lattice

Δε t :

Change in the relative elongation during the polymorphic εCo–αCo transformation

Δε :

Absolute error in the value of ε

α :

Linear thermal expansion coefficient (K1)

β :

Volumetric thermal expansion coefficient (K1)

β c :

Volumetric thermal expansion coefficient of solid polycrystalline sample (K1)

β m :

Volumetric thermal expansion coefficient of liquid sample (K1)

\(\overline{\alpha }_{{\text{g}}}\) :

Mean linear thermal expansion coefficient of the crucible material

J :

Intensity of the radiation after passing through the measuring cell with the sample (s−1)

J S :

Intensity of the radiation after passing through the measuring cell with the solid sample at the melting temperature (s−1)

J L :

Intensity of the radiation after passing through the measuring cell with the liquid sample at the melting temperature (s−1)

J 0 :

Intensity of the radiation after passing through the measuring cell without the sample (s−1)

φ(x):

Relative error in the value of x (pct)

References

  1. J.R. Davis: Nickel, Cobalt and Their Alloys, ASM international, Almere, 2000.

    Google Scholar 

  2. M. Hawkins: Appl. Earth Sci., 2001, vol. 110, pp. 66–70.

    Article  Google Scholar 

  3. T. Nishizawa and K. Ishida: Bull. Alloy Phase Diagrams., 1983, vol. 4, pp. 387–90.

    Article  Google Scholar 

  4. Y.S. Touloukian, R.K. Kirby, and R.E. Taylor: Thermophysical Properties of Matter, vol. 12, Plenum Press, New York, 1975.

    Google Scholar 

  5. S.I. Novikova: Thermal Expansion of Solids, Nauka, Moscow, 1974.

    Google Scholar 

  6. C.Y. Ho: Properties of Selected Ferrous Alloying Elements, Hemisphere Publishing Corporation, New York, Washington, Philadelphia, London, 1989.

    Google Scholar 

  7. X.G. Lu, M. Selleby, and B. Sundman: Calphad., 2005, vol. 29, pp. 68–89.

    Article  CAS  Google Scholar 

  8. M.J. Assael, I.J. Armyra, J. Brillo, S.V. Stankus, J. Wu, and W.A. Wakeham: J. Phys. Chem. Ref. Data., 2012, vol. 41, pp. 033101-1-033101–16.

    Google Scholar 

  9. F. Richter and U. Lotter: Phys. Status Solidi B., 1969, vol. 34, pp. K149–52.

    Article  CAS  Google Scholar 

  10. I.S. Bolgov, Yu.N. Smirnov, and V.A. Finkel: Phys. Met. Metallogr., 1964, vol. 17, pp. 76–9.

    Google Scholar 

  11. F. Vincent and M. Figlarz: C. R. Acad. Sci., 1967, vol. 264, pp. 1270–3.

    CAS  Google Scholar 

  12. R. Kohlhaas, P. Dünner, and P.N. Schmitz-Pranghe: Z. Angew. Phys., 1967, vol. 23, pp. 245–9.

    CAS  Google Scholar 

  13. S. Müller and P. Scholten: Z. Angew. Phys., 1966, vol. 20, pp. 498–502.

    Google Scholar 

  14. S. Müller, P. Dünner, and N. Schmitz-Pranghe: Z. Angew. Phys., 1967, vol. 22, pp. 403–6.

    Google Scholar 

  15. G.I. Kulesco and A.L. Seryugin: Phys. Met. Metallogr., 1968, vol. 26, pp. 140–3.

    Google Scholar 

  16. F. Ono and H. Maeta: Phys. B., 1990, vol. 161, pp. 134–8.

    Article  Google Scholar 

  17. A.A. Vertman, A.M. Samarin, and E.S. Fillipov: Sov. Phys.-Dokl., 1964, vol. 155, pp. 323–5.

    CAS  Google Scholar 

  18. R.A. Khairulin: Thermal Properties of Rare Earth Metals In solid and Liquid States, Ph.D. thesis, Institute of Thermophysics, Novosibirsk, 1991.

  19. X.J. Han, N. Wang, and B. Wei: Philos. Mag. Lett., 2002, vol. 82, pp. 451–9.

    Article  CAS  Google Scholar 

  20. S. Watanabe: Trans. Jpn. Inst. Met., 1971, vol. 12, pp. 17–22.

    Article  Google Scholar 

  21. J. Brillo, I. Egry, and T. Matsushita: Int. J. Mater. Res., 2006, vol. 97, pp. 1526–32.

    Article  CAS  Google Scholar 

  22. P.F. Paradis, T. Ishikawa, and N. Koike: HTHP., 2008, vol. 37, pp. 5–11.

    CAS  Google Scholar 

  23. W.D. Drotning: HTHP., 1981, vol. 13, pp. 441–58.

    CAS  Google Scholar 

  24. M.G. Frohberg and R. Weber: Arch. Eisenhuettenwes., 1964, vol. 35, pp. 877–83.

    CAS  Google Scholar 

  25. A.D. Kirshenbaum and J.A. Cahill: Trans. Am. Soc. Met., 1963, vol. 56, pp. 281–6.

    CAS  Google Scholar 

  26. F.N. Tavadze, I.A. Bayramashvili, and D.V. Khantadze: Surface Phenomena in Melts and Solid Phases Arising from Them, Kabardino-Balkarian book publishing house, Nalchik, 1965, pp. 376–82.

    Google Scholar 

  27. E.S. Levin, G.D. Ayushina, and V.K. Zav’yalov: Physical Properties of Metals and Alloys, Trudy UPI, Sverdlovsk, 1970, pp. 92–7.

    Google Scholar 

  28. L.M. Shergin: Temperature Dependence of Densities and Surface Tension of Iron–Nickel–Silicon and Iron–Cobalt–Silicon Melts. PhD thesis, Institute of Electrochemistry, Sverdlovsk, 1970.

  29. L.D. Lucas: Density of metals at high temperature (in solid and liquid states). Mem. Sci. Rev. Metall., 1972, vol. 69, pp. 479–92.

    CAS  Google Scholar 

  30. Y. Sato, T. Nishizuka, T. Takamizawa, K. Sugisawa and T. Yamamura: Proc. of 16th European Conf. on Thermophysical Properties, London, 2002.

  31. E.M. Dudnik: Investigation of Some Physical and Chemical Properties of Simple Substances and Compounds During the Solid–Liquid Phase Transition, PhD thesis, Institute for Problems of Materials Science, Kiev, 1970.

  32. I.S. Ivakhnenko and V.I. Kashin: Regularities of the Interaction of Liquid Metal with Gases and Slags, Nauka, Moscow, 1976, pp. 135–42.

    Google Scholar 

  33. V.V. Makeev, E.L. Demina, P.S. Popel’, and E.L. Arkhangel’skii: High Temp., 1989, vol. 27, pp. 701–6.

    Google Scholar 

  34. EYu. Tonkov: Phase Diagrams of the Elements at High Pressure, Nauka, Moscow, 1979.

    Google Scholar 

  35. S.V. Stankus: Density Change of Elements on Melting. Methods and Experimental Data. Preprint No. 275, Institute of Thermophysics, Novosibirsk, 1991.

  36. Yu.M. Kozlovskii and S.V. Stankus: High Temp., 2014, vol. 52, pp. 536–40.

    Article  CAS  Google Scholar 

  37. R.N. Abdullaev, Yu.M. Kozlovskii, R.A. Khairulin, and S.V. Stankus: Int. J. Thermophys., 2015, vol. 36, pp. 603–19.

    Article  CAS  Google Scholar 

  38. R.N. Abdullaev, R.A. Khairulin, Yu.M. Kozlovskii, A.S. Agazhanov, and S.V. Stankus: Trans. Nonferrous Met. Soc. China., 2019, vol. 29, pp. 507–14.

    Article  CAS  Google Scholar 

  39. S.V. Stankus, R.A. Khairulin and P.S. Popel': The Technique of Experimental Determination of the Density of Solid and Liquid Materials by a Gamma Method. GSSSD ME 206-2013, Standartinform, Moscow, 2013.

  40. S.V. Stankus and R.A. Khairulin: High Temp., 1992, vol. 30, pp. 386–91.

    Google Scholar 

  41. R. Adams and C. Altstetter: Trans. Metall. Soc. AIME., 1968, vol. 242, pp. 139–43.

    CAS  Google Scholar 

  42. W. Krajewski, J. Krüger, and H. Winterhager: Metall. J., 1970, vol. 24, pp. 480–7.

    CAS  Google Scholar 

  43. B. Dubois: Bull. Soc. Encourag. Ind. Nat., 1975, vol. 1.

  44. Yu.M. Kozlovskii and S.V. Stankus: J. Phys.: Conf. Ser., 2019, vol. 1382, pp. 012181–1-012181–6.

    Google Scholar 

  45. A.S. Normanton: Met. Sci., 1975, vol. 9, pp. 455–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work carried out under state contract with IT SB RAS (121031800219-2).

Conflict of interest

The author declares that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Abdullaev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 14, 2021; accepted October 1, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullaev, R.N., Khairulin, R.A., Kozlovskii, Y.M. et al. Density and Thermal Expansion of High Purity Cobalt over the Temperature Range from 140 K to 2073 K. Metall Mater Trans A 52, 5449–5456 (2021). https://doi.org/10.1007/s11661-021-06485-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06485-1

Navigation