Skip to main content
Log in

Thermal properties of rare earth cobalt oxides and of La1–x Gd x CoO3 solid solutions

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Powder X-ray diffraction data for the crystal structure, phase composition, and molar specific heat for La1‒x Gd x CoO3 cobaltites in the temperature range of 300–1000 K have been analyzed. The behavior of the volume thermal expansion coefficient in cobaltites with isovalent doping in the temperature range of 100–1000 K is studied. It is found that the β(T) curve exhibits two peaks at some doping levels. The rate of the change in the occupation number for the high-spin state of cobalt ions is calculated for the compounds under study taking into account the spin–orbit interaction. With the Birch–Murnaghan equation of state, it is demonstrated that the low-temperature peak in the thermal expansion shifts with the growth of the pressure toward higher temperatures and at pressure P ∼ 7 GPa coincides with the second peak. The similarity in the behavior of the thermal expansion coefficient in the La1–x Gd x CoO3 compounds with the isovalent substitution and the undoped LnCoO3 compound (Ln is a lanthanide) is considered. For the whole series of rare earth cobalt oxides, the nature of two specific features in the temperature dependence of the specific heat and thermal expansion is revealed and their relation to the occupation number for the high-spin state of cobalt ions and to the insulator–metal transition is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. R. Michel, A. H. Martinez, F. Huerta-Villalpando, and J. P. Moran-Lazaro, J. Alloys Compd. 484, 605 (2009).

    Article  Google Scholar 

  2. T. Inagaki, K. Miura, H. Yoshida, R. Maric, S. Ohara, X. Zhang, K. Mukai, and T. Fukui, J. Power Sources 86, 347 (2000).

    Article  ADS  Google Scholar 

  3. C. H. Chen, H. J. M. Bouwmeester, R. H. E. van Doorn, H. Kruidhof, and A. J. Burggraaf, Solid State Ionics 98, 7 (1997).

    Article  Google Scholar 

  4. N. B. Ivanova, S. G. Ovchinnikov, M. M. Korshunov, I. M. Eremin, and N. V. Kazak, Phys. Usp. 52, 789 (2009).

    Article  ADS  Google Scholar 

  5. I. O. Troyanchuk, D. V. Karpinskii, A. N. Chobot, and V. M. Dobryanskii, JETP Lett. 84, 151 (2006).

    Article  Google Scholar 

  6. I. O. Troyanchuk, A. N. Chobot, N. V. Tereshko, D. V. Karpinskii, V. Efimov, and V. Sikolenko, J. Exp. Theor. Phys. 112, 837 (2011).

    Article  ADS  Google Scholar 

  7. S. V. Vonsovskii and M. S. Svirskii, Sov. Phys. JETP 20, 914 (1965).

    Google Scholar 

  8. P. G. Radaelli and S.-W. Cheong, Phys. Rev. B 66, 094408 (2002).

    Article  ADS  Google Scholar 

  9. K. Berggold, M. Kriener, P. Becker, M. Benomar, M. Reuther, C. Zobel, and T. Lorenz, Phys. Rev. B 78, 134402 (2008).

    Article  ADS  Google Scholar 

  10. K. Knizek, J. Jirak, J. Hejtmanek, M. Veverka, M. Marysko, G. Maris, and T. T. M. Palstra, Eur. Phys. J. B 47, 213 (2005).

    Article  ADS  Google Scholar 

  11. H. Hashimoto, T. Kusunose, and T. Sekino, Mater. Trans. 51, 404 (2010).

    Article  Google Scholar 

  12. Yu. S. Orlov, L. A. Solovyov, V. A. Dudnikov, A. S. Fedorov, A. A. Kuzubov, N. V. Kazak, V. N. Voronov, S. N. Vereshchagin, N. N. Shishkina, N. S. Perov, K. V. Lamonova, R. Yu. Babkin, Yu. G. Pashkevich, A. G. Anshits, and S. G. Ovchinnikov, Phys. Rev. B 88, 235105 (2013).

    Article  ADS  Google Scholar 

  13. H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).

    Article  Google Scholar 

  14. L. A. Solovyov, J. Appl. Crystallogr. 37, 743 (2004).

    Article  Google Scholar 

  15. S. G. Ovchinnikov, Yu. S. Orlov, V. A. Dudnikov, S. N. Vereshchagin, and N. S. Perov, J. Magn. Magn. Mater. 383, 162 (2015).

    Article  ADS  Google Scholar 

  16. F. J. Birch, Phys. Rev. 71, 809 (1947).

    Article  ADS  Google Scholar 

  17. F. J. Birch, J. Geophys. Res. 91, 4949 (1986).

    Article  ADS  Google Scholar 

  18. V. A. Dudnikov, S. G. Ovchinnikov, Yu. S. Orlov, N. V. Kazak, C. R. Michel, G. S. Patrin, and G. Yu. Yur’ev, J. Exp. Theor. Phys.= 114, 841 (2012).

    Article  ADS  Google Scholar 

  19. J. Baier, S. Jodlauk, M. Kriener, A. Reichl, C. Zobel, H. Kierspel, A. Freimuth, and T. Lorenz, Phys. Rev. B 71, 014443 (2005).

    Article  ADS  Google Scholar 

  20. S. Stolen, F. Gronvold, and H. Brinks, Phys. Rev. B 55, 14103 (1997).

    Article  ADS  Google Scholar 

  21. M. Tachibana, T. Yoshida, H. Kawaji, T. Atake, and E. Takayama-Muromachi, Phys. Rev. B 77, 094402 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Orlov.

Additional information

Original Russian Text © Yu.S. Orlov, V.A. Dudnikov, M.V. Gorev, S.N. Vereshchagin, L.A. Solov’ev, S.G. Ovchinnikov, 2016, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 103, No. 9, pp. 689–694.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, Y.S., Dudnikov, V.A., Gorev, M.V. et al. Thermal properties of rare earth cobalt oxides and of La1–x Gd x CoO3 solid solutions. Jetp Lett. 103, 607–612 (2016). https://doi.org/10.1134/S0021364016090058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364016090058

Navigation