Skip to main content
Log in

Development of an Aluminum Brazing Sheet Product with Barrier Layer for High-Performance Automotive Heat Exchangers

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A high-strength aluminum brazing sheet product has been developed for automotive heat exchangers. It consists of commercial Al-Si clad, newly designed Al-Mn-Cu-Mg core, and pure aluminum barrier between the clad and core. The microstructure, mechanical properties, corrosion resistance, and braze-ability were investigated and compared with regular brazing sheets without barrier. The newly designed Al-Mn-Cu-Mg alloys are much stronger than commercial Al-Mn-Cu core alloys and the high strength is maintained up to 573.15 K (300 °C). However, liquid–solid interaction occurs extensively during brazing when the Al-Si clad contacts the Al-Mn-Cu-Mg core directly, resulting in degrading of mechanical properties and corrosion resistance. The barrier provides a physical separation between the clad and core, preventing not only the liquid–solid interaction, but also the solid diffusion of Si from clad to core and Mg from core to sheet surface. The accumulation of Si and Mg in the barrier leads to a high population density of Mg2Si precipitates, acting as a sacrificial band to delay the through-thickness corrosion. Meanwhile, the low Mg level in the sheet surface ensures high braze-ability for commercial flux brazing processes. The new sheet product is therefore suitable to high-performance automotive heat exchangers, especially the ones that may serve at temperatures above 473.15 K (200 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. [1] M.M. Schwartz: Brazing, ASM International, Materials Park, 1987.

    Google Scholar 

  2. [2] G. Humpston and D.M. Jacobson: Principle of Soldering and Brazing, ASM international, Materials Park, 1991.

    Google Scholar 

  3. [3] R. Woods: CAB Brazing Metallurgy, 12th Annual International Invitational Aluminum Brazing Seminar, AFC Holcroft, Novi, 2007.

    Google Scholar 

  4. [4] M.P. Groover: Fundamentals of Modern Manufacturing: Materials Processes and Systems, Wiley, Hoboken, 2007.

    Google Scholar 

  5. J. Liu: NOCOLOK Flux and Aluminum Brazing, SAE Technical Paper 960244, 1996.

  6. [6] H. Jin, J. Liang, Y. Zeng and M. S. Kozdras: SAE Int. J. Mater. Manf., 2015, vol. 8(3), pp. 736-43.

    Article  Google Scholar 

  7. [7] H. Jin, M.S. Kozdras, B. Shalchi-Amirkhiz and S.L. Winkler: Metall. Mater. Trans., 2018, vol. 49A, pp. 3091-3108.

    Article  Google Scholar 

  8. [8] F.P. Incropera, D.P. DeWitt, T.L. Bergman and A.S. Lavine: Introduction to Heat Transfer, Wiley, Hoboken, 2007.

    Google Scholar 

  9. [9] E.A.D. Saunders: Heat Exchanges: Selection, Design and Construction, Wiley, New York, 1988.

    Google Scholar 

  10. [10] J.B. Heywood: Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 1988.

    Google Scholar 

  11. [11] B. Hu, J.W.G. Turner, S. Akehurst, C. Brace and C. Copeland: J. Auto. Eng., 2017, vol. 231(4), pp. 435-56.

    Article  Google Scholar 

  12. [12] H. Jin: Metall. Mater. Trans., 2019, vol. 49A, pp. 3091-3108.

    Google Scholar 

  13. [13] M. Nylén, U. Gustavsson, B. Hutchinson and A. Örtnäs: Mater. Sci. Forum, 2000, vol. 331-337, pp. 1737-42.

    Article  Google Scholar 

  14. S.D. Meijers: Corrosion of aluminium brazing sheet, Ph.D. Thesis, Delft University of Technology, 2002.

  15. [15] A.J. Wittebrood, S. Desikan, R. Boom and L. Katgerman: Mater. Sci. Forum, 2006, vol. 519-521, pp. 1151-56.

    Article  Google Scholar 

  16. A. Wittebrood: Microstructural changes in brazing sheet due to sold-liquid interaction, Ph.D. Thesis, Delft University of Technology, 2009.

  17. P.E. Fortin, P.H. Marois and D.G.S. Evans: US Patents 5037707 and 5041343, August 1991.

  18. A. Gray, G.J. Marshall and A.J.E. Flemming: International Patent WO 94/22633, October 1994.

  19. [19] G.J. Marshall, R.K. Bolingbroke and A. Gray: Metall. Trans., 1993, vol. 24A, pp. 1935-42.

    Article  CAS  Google Scholar 

  20. G.J. Marshall, A.J.E. Flemming, A. Gray and R. Llewellyn: Proc. 4th Int. Conf. Aluminium and Alloys, Atlanta, USA, 1994, vol. 1, pp. 467-74.

  21. R. Benedictus, S.D. Meijers, A.J. Wittebrood and J.H.W. de Witt: Proc. 6th Int. Conf. Aluminium and Alloys, The Japan Institute of Light Metals, Toyohashi, Japan, 1998, pp. 1577-82.

  22. J. Liu and T. Worlitz: NOCOLOK brazing aluminum heat exchangers, SAE Technical Paper 950117, 1995.

  23. [23] H. Jin, B. Shalchi-Amirkhiz and D.J. Lloyd: Metall. Mater. Trans., 2018, vol. 49A, pp. 1962-79.

    Article  Google Scholar 

  24. [24] H. Jin: Metall. Mater. Trans., 2019, vol. 50A, pp. 3868-90.

    Article  Google Scholar 

  25. [25] L.F. Mondolfo: Aluminum Alloys: Structure and Properties, Butterworth & Co Ltd., London, UK, 1976.

    Google Scholar 

  26. [26] A.S. Argon: Strengthening Mechanisms in Crystal Plasticity, Oxford University Press, Oxford, UK, 2008.

    Google Scholar 

  27. [27] J.E. Hatch: Aluminum: Properties and Physical Metallurgy, American Society for Metals, Metals Park, 1984.

    Google Scholar 

  28. [28] T.W. Clyne and P.J. Withers: An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, UK, 1993.

    Book  Google Scholar 

  29. R. Benedictus, A. Burger and A.J.P. Haszler: US Patent 7226669B2, June 2007.

  30. [30] T. Stenqvist, K. Bång, S. Kahl, A. Contet and O. Karlsson: Mater. Sci. Forum, 2014, vol. 794-796, pp. 1239-44.

    Article  Google Scholar 

  31. [31] S.A. Court, K.M. Gatenby and D.J. Lloyd: Mater. Sci. Eng., 2001, vol. A319-321, pp. 443-47.

    Article  Google Scholar 

  32. [32] D.J. Lloyd and S.A. Court: Mater. Sci. Tech., 2003, vol. 19, pp. 1349-54.

    Article  CAS  Google Scholar 

  33. [33] H. Jin: Metall. Mater. Trans., 2018, vol. 49A, pp. 6122-33.

    Article  Google Scholar 

  34. S. Esmaeili, Precipitation hardening behaviour of AA6111, Ph.D. Thesis, University of British Columbia, 2002.

  35. ASTM G69-12, Standard Test Method for Measurement of Corrosion Potentials of Aluminum Alloys, ASTM International, West Conshohocken, PA, 2012.

  36. [36] C. Vargel: Corrosion of Aluminium, Elsevier Science, Amsterdam, 2004.

    Book  Google Scholar 

  37. [37] M. Zamin: Corrosion, 1981, vol. 37, pp. 627-32.

    Article  CAS  Google Scholar 

  38. [38] R.G. Buchheit: J. Electrochemical Society, 1995, vol. 142, pp. 3994-96.

    Article  CAS  Google Scholar 

  39. [39] J.R. Davis: ASM Specialty Handbook: Aluminium and Aluminium alloys, ASM international, Materials Park, 1994.

    Google Scholar 

  40. [40] S. Fujikawa, K. Hirano and Y. Fukushima: Metall. Trans., 1978, vol. 9A, pp. 1811-15.

    Article  CAS  Google Scholar 

  41. [41] J. Verlinden and R. Gijbels: Adv. Mass. Spectrom., 1980, vol. 8A, pp. 485-95.

    CAS  Google Scholar 

  42. [42] S. Fujikawa and K. Hirano: Def. Diff. Forum, 1989, vol. 66-69, pp. 447-52.

    Google Scholar 

  43. [43] G. Rummel, T. Zumkley, M. Eggersmann, K. Freitag and H. Mehrer: Z. Metallkd., 1995, vol. 86, pp. 122-30.

    CAS  Google Scholar 

  44. [44] M.J. Benoit, M.A. Whitney, M.A. Wells, H. Jin and S. Winkler: Metall. Mater. Trans., 2017, vol. 48A, pp. 4645-654.

    Article  Google Scholar 

  45. [45] M.J. Benoit, R. Kaur, M.A. Wells, H. Jin, B. Shalchi-Amirkhiz and S. Winkler: J. Mater. Proc. Tech., 2018, vol. 254, pp. 353-60.

    Article  CAS  Google Scholar 

  46. [46] M.J. Benoit, H. Jin, B. Shalchi-Amirkhiz, S. Kurukuri, S. Winkler, M.J. Worswick and M.A. Wells, J. Mater. Proc. Tech., 2020, vol. 281, 116639.

    Article  CAS  Google Scholar 

  47. H. Jin, The role of transition metal solutes in the deformation texture, recrystallization and grain growth in aluminum and its alloys, Ph.D. Thesis, Queen’s University at Kingston, 2001.

Download references

Acknowledgment

This work was supported by Natural Resources Canada through P-002605.001. Dr. B. Shalchi Amirkhiz is appreciated for the TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Jin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 20 October 2020; accepted 29 January 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, H. Development of an Aluminum Brazing Sheet Product with Barrier Layer for High-Performance Automotive Heat Exchangers. Metall Mater Trans A 52, 1409–1426 (2021). https://doi.org/10.1007/s11661-021-06172-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06172-1

Navigation