Skip to main content
Log in

Microstructure Evolution of Fine-Grained Cobalt T400 Tribaloy Processed by Spark Plasma Sintering or Hot Isostatic Pressing of Gas-Atomized Powders

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Tribaloys are Laves phases-hardened cobalt alloys usually produced by casting. In order to obtain a finer and more homogeneous microstructure, powder metallurgy was used by gas atomization of T400 Tribaloy powders followed by either spark plasma sintering (SPS) or hot isostatic pressing (HIP). Quantitative characterization of the microstructure was performed with X-ray diffraction, electron microscopy combined with energy-dispersive X-ray spectroscopy, at all stages of the processes. The gas atomized powder presents a fine composite microstructure composed of eutectic Laves phases and cobalt solid solution. The fraction of Laves phases increases upon consolidation time and temperature, with a composition tending to Co3Mo2(Si + Cr). This results in a hardness between 60 and 62 HRC for Spark Plasma Sintered and Hot Isostatic Pressed parts, depending on the consolidation parameters. The high solidification rates of atomization combined with powder consolidation lead to a fine-grained alloy, more homogeneous than cast alloys for the same grades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. I. Hutching, P. Shipway, Tribology : Friction and Wear of Engineering Materials, 2nd Edition, Butterworth-Heinemann, Oxford, 2016

    Google Scholar 

  2. Bolellia, V. Cannilloa, L. Lusvarghia, M. Montorsia, F. P. Mantinia, M. Barletta, Wear, 2007, vol. 263, pp. 1397–1416,

    Article  Google Scholar 

  3. T. Sahraoui, H.I. Feraoun, N. Fenineche, G. Montavon, H. Aourag, and C. Coddet, Materials Letters, 2004, vol. 58(19), pp. 2433 – 2436

    Article  CAS  Google Scholar 

  4. J. Y. Cho, S. H. Zhang, T. Y. Cho, J. H. Yoon, Y. K. Joo, S. K. Hur, J Mater Sci, 2009, vol. 44, pp. 6348–6355

    Article  CAS  Google Scholar 

  5. Hoganas. https://www.hoganas.com/globalassets/media/sharepoint-documents/brochuresanddatasheetsalldocuments/powder_choice_with_ease.pdf, 2018.

  6. Kennametal. https://www.kennametal.com/en/products/powdered-materials-and-equipment/thermal-spray-powders.html, 2018.

  7. K. Jiang, R. Liu, K. Chen, and M. Liang, Wear, 2013, vol. 307, pp. 22 – 27.

    Article  CAS  Google Scholar 

  8. A. Frenk and W. Kurz. Microstructural effects on the sliding wear resistance of a cobalt-based alloy. Wear, 1994, vol. 174, pp. 81–91.

    Article  CAS  Google Scholar 

  9. C.D. Opris, R. Liu, M.X. Yao, and X.J. Wu, Materials and Design, 2007, vol. 28, pp. 581-591.

    Article  CAS  Google Scholar 

  10. M.A. Ashworth, J. Bryar, M.H. Jacobs, and S. Davies, Powder Metallurgy, 1999, vol. 42, pp. 243–249.

    Article  CAS  Google Scholar 

  11. A. Halstead and R. D. Rawlings, Journal of Materials Science, 1985, vol. 20, pp. 1248–1256.

    Article  CAS  Google Scholar 

  12. E. Ström, J. Zhang, S. Eriksson, C. Li, and D. Feng, Materials Science and Engineering: A, 2002, vol. 329-331, pp. 289 – 294.

    Article  Google Scholar 

  13. R. Liu, W. Xu, M.X. Yao, P.C. Patnaik, and X.J. Wu, Scripta Materialia, 2005, vol. 53, pp.1351 – 1355.

    Article  CAS  Google Scholar 

  14. W. Xu, Master’s thesis, Carleton Universtiy, 2005.

  15. F. S. Georgette and J. A. Davidson, Journal of Biomedical Materials Research, 1986, vol. 20, pp. 1229–1248.

    Article  CAS  Google Scholar 

  16. T. J. J. Jacobs, R. M. Latanision, T. R. M. Rose, and S. J. Veeck, Journal of Orthopaedic Research, 1990, vol. 8, pp. 874–882.

    Article  CAS  Google Scholar 

  17. J. Haan, M. Asseln, M. Zivcec, J. Eschweiler, R. Radermacher, and C. Broeckmann, Powder Metallurgy, 2015, vol. 58, pp. 161.

    Article  CAS  Google Scholar 

  18. B Patel, F Inam, M Reece, M Edirisinghe, W Bonfield, J Huang, and A Angadji, Journal of the Royal Society Interface, 2010, vol. 7, pp. 1641–1645.

    Article  CAS  Google Scholar 

  19. Q. Meng, S. Guo, X. Zhao, S.Veintemillas-Verdaguer, Journal of Alloys and Compounds, 2013, vol. 580, pp. 187–190

    Article  CAS  Google Scholar 

  20. W. Xu, R. Liua, P.C. Patnaik, M.X. Yao, and X.J. Wu, Materials Science and Engineering A, 2007, vol 452, pp. 427–436.

    Article  Google Scholar 

Download references

Acknowledgments

X. Boulnat thanks S. Cottrino and F. Mercier for their help in performing high-temperature consolidations of the powders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Boulnat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 26, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulnat, X., Lafont, C., Coudert, JB. et al. Microstructure Evolution of Fine-Grained Cobalt T400 Tribaloy Processed by Spark Plasma Sintering or Hot Isostatic Pressing of Gas-Atomized Powders. Metall Mater Trans A 51, 5318–5327 (2020). https://doi.org/10.1007/s11661-020-05962-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05962-3

Navigation