Skip to main content
Log in

Quench Temperature-Dependent Mechanical Properties During Nonisothermal Partitioning

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present study demonstrates the role of hot rolling and quench temperature in determining the mechanical properties of low alloy steel processed through quenching and nonisothermal partitioning (Q&P) route. The results indicate that the abrasive wear resistance does not show any significant variation with quench temperature. However, a reduction in tensile strength and an increase in charpy impact toughness and elongation is observed with increasing quench temperature. Interestingly, the retained austenite shows high thermal stability at sub-zero temperature. Furthermore, during deformation through the wear process, the retained austenite experiences the TRIP effect that leads to improvement in wear resistance. The incorporation of hot rolling prior to Q&P led to a significant improvement in strength, energy absorption capability and wear resistance due to a considerable refinement of the microstructural constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X. Tan, Y. Xu, X. Yang, Z. Liu, and D. Wu: Mater. Sci. Eng. A, 2014, vol. 594, pp. 149-60.

    Article  CAS  Google Scholar 

  2. G.A. Thomas: Simulation of hot-rolled advanced high strength sheet steel production using a Gleeble system, MS Thesis, Colorado School of Mines, Golden, Co, 2009.

  3. G.A. Thomas, J.G. Speer, and D.K. Matlock: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3652–59.

    Article  Google Scholar 

  4. X.D. Tan, Y.B. Xu, X.L. Yang, Z.P. Hu, F. Peng, X.W. Ju, and D. Wu: Mater. Charact., 2015, vol. 104, pp. 23–30.

    Article  CAS  Google Scholar 

  5. Y. Li, X. Li, G. Yuan, J. Kang, D. Chen, and G. Wang: Mater. Charact., 2016, vol. 121, pp. 157–65.

    Article  CAS  Google Scholar 

  6. Y. Li, D. Chen, X.Li, J. Kang, G.Yuan, R.D.K. Misra, and G.Wang: Steel Res. Int., 2018, vol. 89, pp. 1-11.

    Google Scholar 

  7. G.K. Bansal, V. Rajinikanth, C. Ghosh, V.C. Srivastava, S. Kundu, and S.G. Chowdhury: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3501-14.

    Article  Google Scholar 

  8. Y.J. Li, J. Kang, W.N. Zhang, D. Liu, X.H. Wang, G. Yuan, R.D.K. Misra, and G.D. Wang: Mater. Sci. Eng. A, 2018, vol. 710, pp. 181-91.

    Article  CAS  Google Scholar 

  9. K. Jian, W. Chao, L. Yunjie, Y. Guo, and W. Guodong: J. Wuhan Univ. Technol. Mater. Sci. Ed., 2016, vol. 31, pp. 178-85.

    Article  Google Scholar 

  10. Y.J. Li, D. Chen, D. Liu, J. Kang, G. Yuan, Q.J. Mao, R.D.K. Misra, and G.D. Wang: Mater. Sci. Eng. A, 2018, vol. 732, pp. 298-310.

    Article  CAS  Google Scholar 

  11. G.K. Bansal, L.P. Junior, C. Ghosh, V. Rajinikanth, S. Tripathy, V.C. Srivastava, A.N. Bhagat, and S.G. Chowdhury: Metall. Mater. Trans. A, 2020, vol. 51, pp. 3410-24.

    Article  Google Scholar 

  12. G.K. Bansal, V. Rajinikanth, C. Ghosh, V.C. Srivastava, M. Dutta, and S.G. Chowdhury: Mater. Sci. Eng. A, 2020, vol. 788, 139614.

    Article  CAS  Google Scholar 

  13. J. Dearden and H. O’Neill: Trans. Inst. Weld, 1940, vol. 3, pp. 203-14.

    Google Scholar 

  14. G.K. Bansal, M. Pradeep, C. Ghosh, V. Rajinikanth, V.C. Srivastava, A.N. Bhagat, and S. Kundu: Metall. Mater. Trans. Commun. A, 2019, vol. 50, pp. 547-55.

    Article  CAS  Google Scholar 

  15. J.G. Speer, A.M. Streicher, D.K. Matlock, F. Rizzo, and G. Krauss: Austenite formation and decomposition, TMS/ISS, Warrendale, 2003, pp. 505-22.

    Google Scholar 

  16. R.A. Young (ed.): Int. Union of Cryst., Oxford University Press, New York, 1993. ISBN 0–19–855577–6.

    Google Scholar 

  17. D.L. Bish and S.A. Howard: J. Appl. Cryst., 1988, vol. 21, pp. 86-91.

    Article  CAS  Google Scholar 

  18. K.O. Findley, J. Hidalgo, R.M. Huizenga, and M.J. Santofimia: Mater. Des., 2017, vol. 117, pp. 248-56.

    Article  CAS  Google Scholar 

  19. I. Mejıa, C. Maldonado, J.A. Benito, J. Jorba, and A. Roca: Mater. Sci. Forum, 2006, vol. 509, pp. 37-42.

    Article  Google Scholar 

  20. H.S. Zhao, W. Li, X. Zhu, X.H. Lu, L. Wang, S. Zhou, and X.J. Jin: Mater. Sci. Eng. A, 2016, vol. 649, pp. 18-26.

    Article  CAS  Google Scholar 

  21. P.C. Wolfram: The microstructural dependence of wear resistance in austenite containing plate steels, MS Thesis, Colorado School of Mines, Golden, Co, 2013.

  22. K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203, pp. 721-27.

    CAS  Google Scholar 

  23. K. Zhang, M. Zhang, Z. Guo, N. Chen, and Y. Rong: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8486-91.

    Article  CAS  Google Scholar 

  24. G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan, and B. Bai: Acta Mater., 2014, vol. 76, pp. 425-33.

    Article  CAS  Google Scholar 

  25. G.K. Bansal, D.A. Madhukar, A.K. Chandan, K Ashok, G.K. Mandal, and V.C. Srivastava: Mater. Sci. Eng. A, 2018, vol. 733, pp. 246-56.

    Article  CAS  Google Scholar 

  26. A.K. Chandan, G.K. Bansal, J. Kundu, J. Chakraborty, and S.G. Chowdhury: Mater. Sci. Eng. A, 2019, vol. 768, 138458.

    Article  CAS  Google Scholar 

  27. D.P. Koistinen and R.E. Marburger: Acta Metall., 1959, vol. 7, pp. 59–60.

    Article  Google Scholar 

  28. S. Naseema, G.K. Bansal, M. Ghosh, G. Das, V.C. Srivatsava, K.S. Rao, and K.G. Krishna: Adv. Mater. Res., 2018, vol. 1148, pp. 75-81.

    Article  Google Scholar 

  29. M.M. Wang, J.C. Hell, and C.C. Tasan: Scr. Mater., 2017, vol. 138, pp. 1-5.

    Article  CAS  Google Scholar 

  30. G.K. Bansal, V.C. Srivastava, and S.G. Chowdhury: Mater. Sci. Eng. A, 2019, vol. 767, 138416.

    Article  CAS  Google Scholar 

  31. J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, and M. Calcagnotto: Acta Mater., 2011, vol. 59, pp. 4387–94.

    Article  CAS  Google Scholar 

  32. M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 658–70.

    Article  CAS  Google Scholar 

  33. A.H. Jahanara, Y. Mazaheri, and M. Sheikhi: Mater. Sci. Eng. A, 2019, vol. 764, 138206.

    Article  CAS  Google Scholar 

  34. W. Lu, J. Chen, X. Kong, S.S. Chakravarthula, and Y. Qiao: Mech. Mater., 2011, vol. 43, pp. 567-73.

    Article  Google Scholar 

  35. P.S.M. Jena, R.K. Rai, and J. K. Sahu: Mater. Sci. Technol., 2018, vol. 34, pp. 299-304.

    Article  CAS  Google Scholar 

  36. P.S.M. Jena, J.K. Sahu, R.K. Rai, S.K. Das, and R.K. Singh: Wear, 2018, vol. 406-407, pp. 140-48.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Tata Steel management and the Director, CSIR-NML for their kind encouragement and permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ghosh Chowdhury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 3, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, G.K., Jena, P.S.M., Ghosh, C. et al. Quench Temperature-Dependent Mechanical Properties During Nonisothermal Partitioning. Metall Mater Trans A 51, 5088–5100 (2020). https://doi.org/10.1007/s11661-020-05952-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05952-5

Navigation