Skip to main content
Log in

Modeling and Monitoring of the Effect of Scan Strategy on Microstructure in Additive Manufacturing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Laser powder bed fusion is an additive manufacturing process that uses a selective melting technique to build three-dimensional metal structures. This fabrication technique is useful for creating complex parts with fine resolution. However, the repeated scanning method used throughout the process results in complex thermal behavior, which introduces microstructural variations and defects in the final part. The semi-analytical model used in this work calculates the temperature distributions and thermal conditions in laser powder bed fusion to predict the microstructural variations. Additionally, an in situ process monitoring approach is used to verify the predicted influence of the processing parameters and scan strategy on the microstructure of the printed parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Grasso and B. M. Colosimo, Meas. Sci. Technol., 2017, vol. 28:, pp. 1-25.

    Article  Google Scholar 

  2. J. Gockel, L. Sheridan, B. Koerper and B. Whip, Int. J. Fatigue, 2019, vol. 124, pp. 380-388.

    Article  CAS  Google Scholar 

  3. L. Sheridan, O. Scott-Emuakpor, T. George and J. Gockel (2018) Mater. Sci. Eng. A, vol. 727, pp. 170-176.

    Article  CAS  Google Scholar 

  4. J. Raplee, A. Plotkowshi, M. Kirka, R. Dinwiddie, A. Okello, R. R. Dehoff and S. S. Babu, Sci. Rep., 2016, vol. 7, no. 43554, pp. 1-16.

    Google Scholar 

  5. J. Schwerdtfeger, R. F. Singer and C. Körner, Rapid Prototyping Journal, 2012, vol. 18, no. 4, pp. 259-263.

    Article  Google Scholar 

  6. B. Cheng, J. Lydon, K. Cooper, V. Cole, P. Northrop and K. Chou, J. Manuf. Mater. Process., 2017, vol. 32, no. 2018, pp. 744-753.

    Article  Google Scholar 

  7. F. List, R. B. Dinwiddie, K. Carver and J. Gockel, “Melt-Pool Temperature and Size Measurement During Direct Laser Sintering,” Oak Ridge National Lab, ORNL/TM-2014/4, 2017.

  8. W. King, A. T. Anderson, R. M. Ferencz, N. E. Hodge, C. Kamath and S. A. Khairallah, Mater. Sci. Technol., 2015, vol. 31, pp. 957-968.

    Article  CAS  Google Scholar 

  9. J. Goldak, A. Chakravarti and M. Bibby, Metall. Trans., 1984, vol. 31B, pp. 299-305.

    Article  Google Scholar 

  10. P. Promoppatum, S.-C. Yao, P. C. Pistorius and A. D. Rollett, Engineering, 2017, vol. 3, no. 5, pp. 685-694.

    Article  CAS  Google Scholar 

  11. C. Bruna-Rosso, A. G. Demir and B. Previtali, Mater. Des., 2018, vol. 156, pp. 143-153.

    Article  Google Scholar 

  12. M. Masoomi, S. M. Thompson and N. Shamsaei, International Journal of Machine Tools and Manufacture, 2017, Vols. 118-119, pp. 73-90.

    Article  Google Scholar 

  13. D. Rosenthal, Transactions of the ASME, 1946, vol. 68, pp. 849-866.

    Google Scholar 

  14. J. Gockel, L. Sheridan, S. P. Narra, N. Klingbeil and J. Beuth, JOM, 2017, vol. 69, pp. 2706-2710.

    Article  CAS  Google Scholar 

  15. S. Bontha, N. W. Klingbeil, P. A. Kobryn and H. L. Fraser, Mater. Sci. Eng. A, 2009 Vol 513-514, pp. 311-318.

    Article  Google Scholar 

  16. A. Vasinota, J. L. Beuth and R. Ong, in Solid Freeform Fabrication Proceedings, Austin, 2001.

  17. E. J. Schwalbach, S. P. Donegan, M. G. Chapman, K. J. Chaput and M. A. Groeber, Addit. Manuf., 2019, vol. 25, pp. 485-498.

    Google Scholar 

  18. A. Plotkowski, M. Kirka and S. Babu, Addit. Manuf., 2017, vol. 18, pp. 256-268.

    CAS  Google Scholar 

  19. B. Stump and A. Plotkowski, Applied Mathematical Modeling, 2019, vol. 75, pp. 787-805.

    Article  Google Scholar 

  20. H. Carslaw and J. Jaeger (1959) Conduction of Heat in Solids.2nd ed., Oxford: Oxford University Press, pp. 255-260.

    Google Scholar 

  21. Z. Hou and R. Komanduri, J. Tribol., 1998, vol. 120, pp. 645-651.

    Article  CAS  Google Scholar 

  22. R. Komanduri and Z. Hou, Metall. Mater. Trans., 2000, vol. 31B, pp. 1353-1370.

    Article  CAS  Google Scholar 

  23. J. Walker, Wright State University MS Thesis, OhioLink, 2019.

  24. C. L. Frederick, A. Plotkowski, M. M. Kirka, M. Haines, A. Staub, E. J. Schwalbach, D. Cullen and S. S. Babu, Metall. Mater. Trans. A 2018, vol. 49(10), pp. 5080-5096.

    Article  CAS  Google Scholar 

  25. J. Gockel, J. Beuth and K. Taminger, Addit. Manuf., 2014 vol. 1, no. 1, pp. 119-126.

    Google Scholar 

  26. C. Obidigbo, E. Tatman and J. Gockel, The International Journal of Advanced Manufacturing Technology, 2019, vol. 104, pp. 3139-3146.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by an Ohio Space Grant Consortium Fellowship, and a NASA STTR Phase II-X. The authors would like to thank Dr. Alex Plotkowski from Oak Ridge National Laboratory for valuable conversations and the development of the semi-analytical modeling code used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joy Gockel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 18, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, R., Walker, J., Middendorf, J. et al. Modeling and Monitoring of the Effect of Scan Strategy on Microstructure in Additive Manufacturing. Metall Mater Trans A 51, 4123–4129 (2020). https://doi.org/10.1007/s11661-020-05830-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05830-0

Navigation