Skip to main content
Log in

Effects of Zn on Microstructure Modification and Mechanical Properties Improvement of Al-Si-Cu-Mg Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this research, the influence of Zn on the microstructure and mechanical properties of Al-Si-Cu-Mg alloys under different solidification rates was investigated. Differential scanning calorimetry was used to detect the nucleation and growth of eutectic Si, while scanning electron microscopy was used to analyze Fe-rich phases. Two growth models were deduced to explain the modification of the eutectic Si and Fe-rich phases upon the addition of Zn. The results show that an addition of 0.6 wt pct Zn modified the eutectic Si from flake like and fibrous to micron- and submicron-granular structures, depending on the different secondary dendrite arm spacings of ~ 33 μm and ~ 16 μm, respectively. For the Fe-rich phases under steel mold casting conditions, β-Al5FeSi was modified into π-Al8FeMg3Si6 upon adding 0.6 wt pct Zn. Under sand mold casting conditions, the 0.6 wt pct Zn addition only refined the size of the β-Al5FeSi. The Zn addition significantly improved the ultimate tensile strength and elongation. The excellent modification effect of Zn on the eutectic Si and Fe-rich phases was attributed to the fact that the reaction of the Zn-Si eutectic on the {111}Si planes forced the Si atoms from these phases into the eutectic droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. [1] B Guo, W Zhang: Materials Science and Engineering A, 2017, vol. 700, pp. 397–405.

    Article  CAS  Google Scholar 

  2. [2] E. Sjölander, S. Seifeddine: Materials Science and Engineering A, 2011, vol.528, pp. 7402–09.

    Article  Google Scholar 

  3. [3] Y. Han, A.M. Samuel: Materials and Design, 2014, vol. 58, pp. 426–38.

    Article  CAS  Google Scholar 

  4. [4] J Rao, J Zhang, R Liu: Materials Science and Engineering A, 2017, vol. 728, pp. 72–79.

    Article  Google Scholar 

  5. [5] S Beroual, Z Boumerzoug: Journal of Alloys and Compounds, 2019, vol. 784, pp. 1026-35.

    Article  CAS  Google Scholar 

  6. [6] J.H. LI, J. Barrirero: Metall. Mater. Trans. A, 2015, vol. 46, pp. 1300– 11.

    Article  Google Scholar 

  7. [7] M Zamani, S Seifeddine; International Journal of Metal casting, 2016, vol. 10, pp. 457–65.

    CAS  Google Scholar 

  8. [8] J.H. Li, X.D. Wang: Acta Materialia, 2015, vol. 84, pp. 153–63.

    Article  CAS  Google Scholar 

  9. [9] B Jiang, Z Ji: Materials Letters, 2019, vol. 239, pp. 13–16.

    Article  CAS  Google Scholar 

  10. [10] C Xu, F Wang: Journal of Materials Engineering and Performance, 2017, vol. 26, pp. 1605-13.

    Article  CAS  Google Scholar 

  11. W Liu, W Xiao: Mater. Sci. Eng. A, 2017, vol. 693, pp. 93–100.

    Article  CAS  Google Scholar 

  12. T.H. Ludwig, E. Schonhovd Daehlen: J. Alloys Compd., 2014, vol. 586, pp. 180–90.

    Article  CAS  Google Scholar 

  13. [13] Y Wu, G Zhang: Materials Science in Semiconductor Processing, 2011, vol. 14, pp. 302–05.

    Article  CAS  Google Scholar 

  14. [14] S.W. Park, T. Sugahara: Scripta Materialia, 2013, vol. 68, pp. 591–94.

    Article  CAS  Google Scholar 

  15. [15] C Li, C Sun: Journal of Alloys and Compounds, 2017, vol. 14, pp. 93-97.

    Google Scholar 

  16. [16] J Li, P Jia: J Mater Sci, 2014, vol. 25, pp. 1751–56.

    CAS  Google Scholar 

  17. [17] M. A. Moustafa, F. H. Samuel: Journal of Materials Science, 2003, vol. 38, pp. 4507–22.

    Article  CAS  Google Scholar 

  18. [18] L. Lasa, J. M. Rodriguez-Ibabe: Journal of Materials Science, 2004, vol. 39, pp. 1343–55.

    Article  CAS  Google Scholar 

  19. [19] L. F. Mondolfo, Aluminum Alloys: Structure and Properties. Butterworths, London, 1976. p. 644.

    Google Scholar 

  20. [20] J.H. Li, M. Zarif: Acta Materialia, 2014, vol. 72, pp. 80–98.

    Article  CAS  Google Scholar 

  21. [21] S.Z. Lu, A. Hellawell: Metall. Mater. Trans. A, 1987, vol.18A, pp. 1721–33.

    Article  CAS  Google Scholar 

  22. [22] D.R. Hamilton, R.G. Seidensticker: Materials and Design, 2011, vol. 32, pp. 1542-47.

    Article  Google Scholar 

  23. [23] Lejček, P: Acta Materialia, 2019, vol. 170, pp.253–67.

    Article  Google Scholar 

  24. [24] KH Kim: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4538–48.

    Article  Google Scholar 

  25. [25] Shen Youde, Chen Renjie: Orientation and Doping Modulated Growth, 2016, vol.16, pp. 4158-65.

    Google Scholar 

  26. [26] V. Yu. Gershanov, S. I. Garmashov: Technical Physics, 2015, Vol.60, pp. 61-65.

    Article  CAS  Google Scholar 

  27. [28] A. Kruglova, M. Engstler: Computational Materials Science, 2016, vol. 120, pp. 99–107.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Shandong Province of China [Grant No. ZR2016EEM48]; the Major Project of Shandong Science and Technology [Grant No. 2015ZDZX03004]; and the Key R&D Program of Shandong Province of China [Grant Nos. 2019QYTPY057 and 2017CXGC0401].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.-R. Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 3, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 540 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LK., Zhang, BR. Effects of Zn on Microstructure Modification and Mechanical Properties Improvement of Al-Si-Cu-Mg Alloys. Metall Mater Trans A 51, 4158–4167 (2020). https://doi.org/10.1007/s11661-020-05827-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05827-9

Navigation