Skip to main content
Log in

The Effect of Melt Conditioning on Segregation of Solute Elements and Nucleation of Aluminum Grains in a Twin Roll Cast Aluminum Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An aluminum alloy was cast by a laboratory scale horizontal twin roll caster with or without melt conditioning by the intensive shearing prior to solidification and then examined by high-resolution electron microscopy. The combined twin roll casting process with solidification formed channels and induced centerline segregation without the conditioning. In comparison, the melt conditioning minimized the severe segregation on the surface as well as at the centerline. Furthermore, large amounts of solute elements were uniformly distributed along grain boundaries or interdendritic regions. Analytical electron microscopy detected a fine oxide particle or a fragmented aluminum particle particularly at the center region of one nucleated aluminum grain. In addition, large oxide particles of about 1 to 5 μm nucleated aluminum grains easily due to low undercooling necessary for the heterogeneous nucleation, whereas small oxides with the size of about 100 to 200 nm requiring large undercooling were pushed along the grain boundaries instead of contributing to the nucleation. The enhanced nucleation of aluminum grains and well-distributed solute atoms in the melt by the melt conditioning resulted in the minimization of macro- and micro-segregations and the formation of a uniform microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Kimura, T. Inoue, F. Yin, and K. Tsuzaki: Science, 2008, vol. 320, p. 1057-60.

    Article  Google Scholar 

  2. D. StJohn, M. Qian, M. Easton, P. Cao, and Z. Hildebrand: Metall. Mater. Trans. A, 2005, vol. 36A, p. 1669-79.

    Article  Google Scholar 

  3. Y. Zhang, N. Ma, H. Yi, S. Li, and H. Wang: Mater. Des., 2006, vol. 27, p. 794-98.

    Article  Google Scholar 

  4. F. Wang, Z. Liu, D. Qiu, J.A. Taylor, M.A. Easton, and M.-X. Zhang: Acta Mater., 2013, vol. 61, p. 360-70.

    Article  Google Scholar 

  5. J.A. Dantzig, and M. Rappaz, Solidification, CRC Press, Lausanne, 2009.

    Book  Google Scholar 

  6. N. Iqbal, N.H. van Dijk, S.E. Offerman, M.P. Moret, L. Katgerman, and G.J. Kearley: J. Non-Cryst. Solids, 2007, vol. 353, p. 3640-43.

    Article  Google Scholar 

  7. A. Cibula: J. Inst. Met., 1949, vol. 76, p. 321-60.

    Google Scholar 

  8. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, and D.J. Bristow: Acta Mater., 2000, vol. 48, p. 2823-35.

    Article  Google Scholar 

  9. Y. Zuo, H. Li, M. Xia, B. Jiang, G.M. Scamans, and Z. Fan: Scripta Mater., 2011, vol. 64, p. 209-12.

    Article  Google Scholar 

  10. P. Shen, H. Fujii, T. Matsumoto, and K. Nogi: Acta Mater., 2004, vol. 52, p. 887-98.

    Article  Google Scholar 

  11. Z. Fan, Y. Wang, M. Xia, and S. Arumuganathar: Acta Mater., 2009, vol. 57, p. 4891-4901.

    Article  Google Scholar 

  12. I. Bayandorian, Y. Huang, Z. Fan, S. Pawar, X. Zhou, and G.E. Thompson: Metall. Mater. Trans. A, 2012, vol. 43A, p. 1035-47.

    Article  Google Scholar 

  13. S. Kumar, N. Hari Babu, G.M. Scamans, and Z. Fan: Mater. Sci. Technol., 2011, vol. 27, p. 1833-39.

    Article  Google Scholar 

  14. Z. Fan, M.J. Bevis, and S. Ji: US 6745818B1, 1999.

  15. Jones S, Rao AKP, Fan Z: Trans. Indian Inst. Met., 2013, vol. 66, p. 117-21.

    Article  Google Scholar 

  16. Z. Fan, B. Jiang, and Y. Zuo: WO2012035357, 2013.

  17. W. Braunbek: Z. Physik, 1932, vol. 73, p. 312-34.

    Article  Google Scholar 

  18. V. Metan, and K. Eigenfeld: Eur. Phys. J. Spec. Top., 2013, vol. 220, p. 139-50.

    Article  Google Scholar 

  19. C. Vives, and C. Perry: Int. J. Heat Mass Transf., 1986, vol. 29, p. 21-33.

    Article  Google Scholar 

  20. G.I. Eskin: Ultrason. Sonochem., 1994, vol. 1, p. S59-S63.

    Article  Google Scholar 

  21. G.I. Eskin: Ultrason. Sonochem., 2001, vol. 8, p. 319-25.

    Article  Google Scholar 

  22. K. Kim: Mater. Lett., 2014, vol. 117, p. 74-77.

    Article  Google Scholar 

  23. A.K. Dahle, and L. Arnberg: JOM-J. Miner. Met. Mater. Soc., 1996, vol. 48, p. 34-37.

    Article  Google Scholar 

  24. M. Yun, S. Lokyer, and J.D. Hunt: Mater. Sci. Eng. A, 2000, 280, p. 116-23.

    Article  Google Scholar 

  25. I. Jin, L.R. Morris, and J.D. Hunt: J. Met., 1982, vol. 34, p. 70-4.

    Google Scholar 

  26. C. Gras, M. Meredith, and J.D. Hunt: J. Mater. Process. Technol., 2005, vol. 167, p. 62-72.

    Article  Google Scholar 

  27. H. Westengen, and K. Nes: J. Met., 1983, vol. 35, p. 76.

    Google Scholar 

  28. Y. Birol: Aluminium, 1998, vol. 74, p. 318-21.

    Google Scholar 

  29. Y. Wang, H.T. Li, and Z.Y. Fan: Trans. Indian Inst. Met., 2012, vol. 65, p. 653-61.

    Article  Google Scholar 

  30. R. Haghayeghi, E.J. Zoqui, and H. Bahai: J. Alloys Compd., 2009, vol. 481, p. 358-64.

    Article  Google Scholar 

  31. H. Men, B. Jiang, and Z. Fan: Acta Mater., 2010, vol. 58, p. 6526-34.

    Article  Google Scholar 

  32. Y. Birol: Int. J. Cast Met. Res., 2010, vol. 23, p. 250-55.

    Article  Google Scholar 

  33. A. Tewari, S. Vijayalakshmi, S. Tiwari, P. Biswas, S. Kim, R. Mishra, R. Kubic, and A. Sachdev: Metall. Mater. Trans. A, 2013, vol. 44A, p. 2382-98.

    Article  Google Scholar 

  34. K. Kim, M. Watanabe, K. Mitsuishi, K. Iakoubovskii, and S. Kuroda: J. Phys. D Appl. Phys., 2009, vol. 42, p. 065304 (5 pp).

  35. K. Kim, S. Kuroda, and M. Watanabe: J. Therm. Spray Technol., 2010, vol. 19, p. 1244-54.

    Article  Google Scholar 

  36. K. Kim, M. Watanabe, S. Kuroda, and N. Kawano: Mater. Trans., 2011, vol. 52, p. 439-46.

    Article  Google Scholar 

  37. C.M. Allen, K.A.Q. O’Reilly, B. Cantor, and P.V. Evans: Prog. Mater. Sci., 1998, vol. 43, p. 89-170.

    Article  Google Scholar 

  38. D.H. Kim: J. Korean Inst. Met. Mater., 1994, vol. 32, p. 64-73.

    Google Scholar 

  39. D. Brandon, and W.D. Kaplan: Microstructural Characterization of Materials, Wiley, Chichester, 2008.

    Book  Google Scholar 

  40. L.F. Mondolfo, Aluminium Alloys: Structure and Properties, Butterworths, London, 1976.

    Google Scholar 

  41. K. Kim, N. Green, and W. Griffiths: Mater. Sci. Forum, 2013, vol. 765, p. 150-54.

    Article  Google Scholar 

  42. A.E. Karantzalis, A. Lekatou, E. Georgatis, T. Tsiligiannis, and H. Mavros: J. Mater. Eng. Perform., 2010, vol. 19, p. 1268-75.

    Article  Google Scholar 

  43. W. Zhou, and Z.M. Xu: J. Mater. Proc. Technol., 1997, vol. 63, p. 358-63.

    Article  Google Scholar 

  44. S. Erik Naess, and J.-A. Rønningen: Metallography, 1975, vol. 8, p. 391-400.

    Article  Google Scholar 

  45. J.G. Li, M. Huang, M. Ma, W. Ye, D.Y. Liu, D.M. Song, B.Z. Bai, and H.S. Fang: Trans. Nonferr. Met. Soc., 2006, vol. 16, p. 242-53.

    Article  Google Scholar 

  46. P.S. Mohanty, and J.E. Gruzleski: Acta Metall. Mater., 1995, vol. 43, p. 2001-12.

    Article  Google Scholar 

  47. Tjong SC, Chen H: Mater. Sci. Eng. R, 2004, vol. 45, p. 1-88.

    Article  Google Scholar 

  48. X. Liu, Y. Wu, and X. Bian: J. Alloys Compd., 2005, vol. 391, p. 90-94.

    Article  Google Scholar 

  49. L. Yu, X. Liu, H. Ding, and X. Bian: J. Alloys Compd., 2007, vol. 429, p. 119-25.

    Article  Google Scholar 

  50. K. Nogita, S.D. McDonald, K. Tsujimoto, K. Yasuda, and A.K. Dahle: J. Electron Microsc., 2004, vol. 53, p. 361-69.

    Article  Google Scholar 

  51. H. Dai, J. Du, L. Wang, C. Peng, and X. Liu: Phys. B Condens. Matter, 2010, vol. 405, p. 573-78.

    Article  Google Scholar 

  52. J. Chang, I. Moon, and C. Choi: J. Mater. Sci., 1998, vol. 33, p. 5015-23.

    Article  Google Scholar 

  53. P.L. Schaffer, D.N. Miller, and A.K. Dahle: Scripta Mater., 2007, vol. 57, p. 1129-32.

    Article  Google Scholar 

  54. V.M. Sreekumar, R.M. Pillai, B.C. Pai, and M. Chakraborty: Appl. Phys. A Mater. Sci. Process., 2008, vol. 90, p. 745-52.

    Article  Google Scholar 

  55. H.T. Li, Y. Wang, and Z. Fan: Acta Mater., 2012, vol. 60, p. 1528-37.

    Article  Google Scholar 

  56. I. Haginoya, and T. Fukusako: Trans. Jpn. Inst. Met., 1983, vol. 24, p. 613-19.

    Article  Google Scholar 

  57. E.M. Hinton, W.D. Griffiths, and N.R. Green: Mater. Sci. Forum, 2013, vol. 765, p. 180-84.

    Article  Google Scholar 

  58. A. McLeod, and C. Gabryel: Metall. Trans. A, 1992, vol. 23A, p. 1279-83.

    Article  Google Scholar 

  59. S.H. Oh, Y. Kauffmann, C. Scheu, W.D. Kaplan, and M. Rühle: Science, 2005, vol. 310, p. 661-63.

    Article  Google Scholar 

  60. N. Shibata, A. Goto, K. Matsunaga, T. Mizoguchi, S.D. Findlay, T. Yamamoto, and Y. Ikuhara: Phys. Rev. Lett., 2009, vol. 102, p. 136105 (4 pp).

  61. T. Hong, J.R. Smith, and D.J. Srolovitz: Acta Metall. Mater., 1995, vol. 43, p. 2721-30.

    Article  Google Scholar 

  62. Z.Y. Fan: Metall. Mater. Trans. A, 2013, vol. 44A, p. 1409-18.

    Article  Google Scholar 

  63. B. Bramfitt: Metall. Trans., 1970, vol. 1, p. 1987-95.

    Article  Google Scholar 

  64. R. Schweinfest, S. Köstlmeier, F. Ernst, C. Elsäser, T. Wagner, and M.W. Finnis: Philos. Mag. A, 2001, vol. 81, p. 927-55.

    Article  Google Scholar 

  65. D.A. Porter, K.E. Eastering, and M.Y. Sherif: Phase Transformations in Metals and Alloys, 3rd ed., CRC Press, Boca Raton, 2009.

    Google Scholar 

  66. D.M. Herlach, K. Eckler, A. Karma, and M. Schwarz: Mater. Sci. Eng. A, 2001, vol. 304–306, p. 20-25.

    Article  Google Scholar 

  67. M. Schwarz, A. Karma, K. Eckler, and D.M. Herlach: Phys. Rev. Lett., 1994, vol. 73, p. 1380-83.

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. W. D. Griffiths and Prof. N. R. Green of University of Birmingham for financial support under EPSRC Grant EP/H026177/1, Prof. Z. Fan of Brunel University, Dr. S. Kumar of Oxford University, and Mr. A. Powell of University of Birmingham for supplying the material for investigation, Mr. R. Hibberson and Mr. A. Scarratt of Struers Ltd., for the metallographic sample preparation, particularly Prof. Jian-Feng Nie and his review committee for the constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KeeHyun Kim.

Additional information

Manuscript submitted February 13, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K. The Effect of Melt Conditioning on Segregation of Solute Elements and Nucleation of Aluminum Grains in a Twin Roll Cast Aluminum Alloy. Metall Mater Trans A 45, 4538–4548 (2014). https://doi.org/10.1007/s11661-014-2414-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2414-y

Keywords

Navigation