Skip to main content
Log in

Subtleties Behind Hydrogen Embrittlement of Cadmium-Plated 4340 Steel Revealed by Thermal Desorption Spectroscopy and Sustained-Load Tests

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thermal desorption spectroscopy (TDS) and sustained-load tests were used to investigate hydrogen embrittlement (HE), hydrogen profiles and the impact of the baking delay of cadmium-plated 4340 steel-notched bars. The results show a tremendous concentration of hydrogen in the cadmium coatings (200 to 1500 ppma) that does not contribute to HE. Hydrogen in manganese sulfide (MnS) traps was also found not to contribute to HE. The total hydrogen concentration measured by TDS is thus not suitable to determine an embrittlement threshold. Subtracting hydrogen in cadmium and MnS traps from total hydrogen allowed finding a true critical hydrogen concentration threshold of 0.6 ppma (0.01 ppmm). No impact of the baking delay was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. We take the hydrogen electrode as the 0 V potential reference.

  2. In this paper, “ppma” means “ppm atomic” and “ppmm” means “ppm mass” (the conversion factor for hydrogen in iron is 1 ppmm \(= 56\) ppma).

  3. When \(x(t) = 0\), all the hydrogen is still inside the sample. When \(x(t) = 1\), the hydrogen has completely desorbed (i.e. it has totally reacted), and the desorption rate at this point is 0 for the trap of activation energy \(E_{\text{a}}\).

  4. [H]\(_{Steel}\) is the ratio between the number of hydrogen atoms measured divided by the number of iron atom in the steel sample. To get ppma, that number is multiplied by \(10^6\).

  5. Note that this value is not affected by the error introduced by the background removal (for temperature between \(350\,{}^{\circ }{\text {C}}\) and \(500\,{}^{\circ }{\text {C}}\)), since the hydrogen in Figure 8(d) desorbs at temperatures below \(350\,{}^{\circ }{\text {C}}\).

References

  1. W. H. Johnson, Proc. R Soc. Lond., 1874, vol. 23, pp. 168–179.

    Google Scholar 

  2. M. Wang, E. Akiyama, and K. Tsuzaki, Corr. Sci., 2006, vol. 48, pp. 2189–2202.

    Article  CAS  Google Scholar 

  3. M. Wang, E. Akiyama, and K. Tsuzaki, Mater. Sci. Eng. A, 2005, vol. 398, pp. 37–46.

    Article  Google Scholar 

  4. A. R. Troiano, Corrosion, 1959, vol. 15, pp. 57–62.

    Article  Google Scholar 

  5. L. B. Pfeil, Proc. R Soc. Lond., 1926, vol. A112, pp. 128–195.

    Google Scholar 

  6. R. A. Oriani, Corrosion, 1987, vol. 43, pp. 390–397.

    Article  CAS  Google Scholar 

  7. W. W. Gerberich, R. A. Oriani, M.-J. Lji, X. Chen, and T. Foecke, Philosoph. Mag. A, 1991, vol. 63, pp. 363–376.

    Article  CAS  Google Scholar 

  8. D. E. Jiang and E. A. Carter, Acta Mater., 2004, vol. 52, pp. 4801–4807.

    Article  CAS  Google Scholar 

  9. S.P. Lynch: NACE Int., 2007, pp. 1–55.

  10. Z. Tarzimoghadam, M. Rohwerder, S.V. Merzlikin, A. Bashir, L. Yedra, S. Eswara, D. Ponge, and D. Raabe, Acta Mater., 2016, vol. 109, pp. 69–81.

    Article  CAS  Google Scholar 

  11. H. K. Birnbaum and P. Sofronis, Mater. Sci. Eng., 1994, vol. 176, pp. 191– 202.

    Article  CAS  Google Scholar 

  12. P. J. Ferreira, I. M. Robertson, and H. K. Birnbaum, Acta Mater., 1998, vol. 46, pp. 1749–1757.

    Article  CAS  Google Scholar 

  13. I. M. Robertson, Eng. Fract. Mech., 2001, vol. 68, pp. 671–692.

    Article  Google Scholar 

  14. I.M. Robertson, P. Sofronis, A. Nagao, M. L. Martin, S. Wang, D. W. Gross, and K. E. Nygren, Metall. Mater. Trans. A, 2015, vol. 46A, pp. 2323–2341.

    Article  Google Scholar 

  15. S. P. Lynch, Acta Metall., 1988, vol. 20, pp. 2639–2661.

    Article  Google Scholar 

  16. D. Figueroa and M. J. Robinson, Corr. Sci., 2010, vol. 52, pp. 1593–1602.

    Article  CAS  Google Scholar 

  17. M. B. Djukic, Gordana M. B., V. S. Zeravcic, A. Sedmak, and B. Rajicic, Corrosion, 2016, vol. 72, pp. 943–961.

    Article  CAS  Google Scholar 

  18. M. Devanathan, Z. Stachurski, and W. Beck, J. Electrochem. Soc., 1963, vol. 110, pp. 886–890.

    Article  CAS  Google Scholar 

  19. D. A. Berman, Mater. Perform., 1985, vol. 24, pp. 36–41.

    CAS  Google Scholar 

  20. K R Sriraman, S Brahimi, J A Szpunar, and S Yue, J. Appl. Electrochem., 2013, vol. 43, pp. 441–451.

    Article  CAS  Google Scholar 

  21. M. Zamanzadeh, A. Allam, C. Kato, B. Ateya, and H. W. Pickering, J. Electrochem. Soc., 1982, vol. 129, pp. 284–289.

    Article  CAS  Google Scholar 

  22. K. Koenig, A. N. Lasseigne, J. W. Cisler, B. Mishra, R.H. King, and D.L. Olson, Int. J. Press. Vess. Pip., 2010, vol. 87, pp. 605–610.

    Article  CAS  Google Scholar 

  23. S. M. Beloglazov, J. Alloys Compd., 2003, vol. 356-357, pp. 240–243.

    Article  Google Scholar 

  24. D. R. Gabe, J. Appl. Electrochem., 1997, vol. 27, pp. 908–915.

    Article  CAS  Google Scholar 

  25. T. J. Tuaweri, E. M. Adigio, and P. P. Jombo, Int. j. eng. sci. invention res. dev., 2013, vol. 2, pp. 17–24.

    Google Scholar 

  26. W. Blum and L. Farber, Bureau Stand. J. Res., 1930, vol. 4, pp. 27–39.

    Article  Google Scholar 

  27. W. Beck, A. L. Glass, and E. Taylor, Aeronautical Materials Laboratory,, 1965, vol. 112, pp. 53–59.

    CAS  Google Scholar 

  28. A. E. Yaniv, T. P. Radhakrishnan, and L. L. Shreir, Transactions of the IMF, 1967, vol. 45, pp. 1–9.

    Article  CAS  Google Scholar 

  29. A. Turnbull, R. B. Hutchings, and D. H. Ferriss, Mater. Sci. Eng. A, 1997, vol. 238, pp. 317–328.

    Article  Google Scholar 

  30. H. E. Kissinger, Analytical Chemistry, 1957, vol. 29, pp. 1702–1706.

    Article  CAS  Google Scholar 

  31. J. L. Lee and J.Y. Lee, Metal Science, 1983, vol. 17, pp. 426–432.

    Article  CAS  Google Scholar 

  32. H. G. Lee and J.Y. Lee, Acta Metallurgica, 1984, vol. 32, pp. 131–136.

    Article  CAS  Google Scholar 

  33. H. Bhadeshia, ISIJ International, 2016, vol. 56, pp. 24–36.

    Article  CAS  Google Scholar 

  34. F. G. Wei, T. Hara, and K. Tsuzaki, Metallurgical and Materials Transactions B, 2004, vol. 35, pp. 587–597.

    Article  CAS  Google Scholar 

  35. H. J. Grabke and E. Riecke, Materials Technology, 2000, vol. 34, pp. 331–342.

    CAS  Google Scholar 

  36. W. Blum, W.P. Barrows, and A. Brenner, Bureau of Standards Journal of Research, 1931, vol. 7, p. 697.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Consortium de Recherche et d’Innovation en Aérospatiale au Québec (CRIAQ), the Natural Sciences and Engineering Research Council of Canada (NSERC), as well as the Fonds de Recherche du Québec—Nature et technologies (FRQNT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bellemare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 29, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellemare, J., Laliberté-Riverin, S., Ménard, D. et al. Subtleties Behind Hydrogen Embrittlement of Cadmium-Plated 4340 Steel Revealed by Thermal Desorption Spectroscopy and Sustained-Load Tests. Metall Mater Trans A 51, 3054–3065 (2020). https://doi.org/10.1007/s11661-020-05741-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05741-0

Navigation